Last updated: 2025-09-10
Checks: 7 0
Knit directory: footprint_clustering/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20250530)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 5c26399. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Unstaged changes:
Modified: code/get_motif_sites.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown
(analysis/prepare_input_data_K562.Rmd
) and HTML
(docs/prepare_input_data_K562.html
) files. If you’ve
configured a remote Git repository (see ?wflow_git_remote
),
click on the hyperlinks in the table below to view the files as they
were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 5c26399 | kevinlkx | 2025-09-10 | wflow_publish("analysis/prepare_input_data_K562.Rmd") |
html | 375763e | kevinlkx | 2025-09-10 | Build site. |
Rmd | f2089fc | kevinlkx | 2025-09-10 | wflow_publish("analysis/prepare_input_data_K562.Rmd") |
html | 7d0b2e4 | kevinlkx | 2025-06-03 | Build site. |
Rmd | 715d7d8 | kevinlkx | 2025-06-03 | wflow_publish("analysis/prepare_*") |
html | ffe5da9 | kevinlkx | 2025-06-03 | Build site. |
Rmd | 7bd0886 | kevinlkx | 2025-06-03 | wflow_publish("analysis/prepare_input_data_K562.Rmd") |
Install TOP
R package
# install.packages("devtools")
devtools::install_github("HarteminkLab/TOP")
Here, we show an example procedure with several steps for preparing input data.
Load R packages
library(TOP)
library(data.table)
To scan for TF motif matches,
we use the FIMO
software from the MEME
suite.
Download hg38 reference genome FASTA file and save it as
hg38.fa
.
mkdir -p /project2/xinhe/kevinluo/footprint_clustering/data/ref_genome
cd /project2/xinhe/kevinluo/footprint_clustering/data/ref_genome
wget https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/analysisSet/hg38.analysisSet.fa.gz
gunzip -c hg38.analysisSet.fa.gz > hg38.fa
Generate the chrom.sizes
file which will be needed
later.
index_fa('/project2/xinhe/kevinluo/footprint_clustering/data/ref_genome/hg38.fa', chromsize_file='/project2/xinhe/kevinluo/footprint_clustering/data/ref_genome/hg38.chrom.sizes')
Download the motif files (in MEME format) from JASPAR.
mkdir -p /project2/xinhe/kevinluo/footprint_clustering/data/motifs/
cd /project2/xinhe/kevinluo/footprint_clustering/data/motifs/
wget https://jaspar.elixir.no/download/data/2024/CORE/JASPAR2024_CORE_non-redundant_pfms_meme.zip
unzip JASPAR2024_CORE_non-redundant_pfms_meme.zip -d JASPAR2024_CORE_non-redundant_pfms_meme
Run FIMO
We take motif matches obtained from FIMO as candidate binding sites, and add 100 bp flanking regions on both sides of the motifs, then filter candidate sites by FIMO p-value and PWM score, and filter the candidate sites falling in ENCODE blacklist regions.
Download ENCODE blacklist from ENCODE
portal and save as blacklist.hg38.bed.gz
.
mkdir -p /project2/xinhe/kevinluo/footprint_clustering/data/ENCODE_blacklist
cd /project2/xinhe/kevinluo/footprint_clustering/data/ENCODE_blacklist
wget https://www.encodeproject.org/files/ENCFF356LFX/@@download/ENCFF356LFX.bed.gz
mv ENCFF356LFX.bed.gz blacklist.hg38.bed.gz
Obtain the candidate sites
Using the following script to run step 1 and step 2 for different TF motifs:
cp /project2/xinhe/kevinluo/footprint_clustering/data/motifs/JASPAR2024_CORE_non-redundant_pfms_meme/MA0139.2.meme /project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/
cp /project2/xinhe/kevinluo/footprint_clustering/data/motifs/JASPAR2024_CORE_non-redundant_pfms_meme/MA0138.3.meme /project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/
cp /project2/xinhe/kevinluo/footprint_clustering/data/motifs/JASPAR2024_CORE_non-redundant_pfms_meme/MA0506.1.meme /project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/
motif_dir='/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/'
## CTCF
Rscript ~/projects/footprint_clustering/code/get_motif_sites.R \
--tf='CTCF' --motif='MA0139.2' --motif_dir=$motif_dir \
--threshP=1e-5 --threshPWM=10 --flank=100 \
--outdir='/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/'
## REST
Rscript ~/projects/footprint_clustering/code/get_motif_sites.R \
--tf='REST' --motif='MA0138.3' --motif_dir=$motif_dir \
--threshP=1e-5 --threshPWM=10 --flank=100 \
--outdir='/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/'
## NRF1
Rscript ~/projects/footprint_clustering/code/get_motif_sites.R \
--tf='NRF1' --motif='MA0506.1' --motif_dir=$motif_dir \
--threshP=1e-5 --threshPWM=10 --flank=100 \
--outdir='/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/'
We use DNase-seq reads from K562 cell line (ENCODE ID:
ENCSR000EMT
).
We first sort and index the BAM file, and obtain the total number of mapped reads from the idxstats file, which will be used later when normalizing read counts by library sizes.
module load samtools
mkdir -p /project2/xinhe/kevinluo/footprint_clustering/data/DNaseseq/K562
cd /project2/xinhe/kevinluo/footprint_clustering/data/DNaseseq/K562
# Download the BAM file from ENCODE
wget https://www.encodeproject.org/files/ENCFF257HEE/@@download/ENCFF257HEE.bam
# Sort the bam file
samtools sort ENCFF257HEE.bam -o DNaseseq_K562_alignments_sorted_hg38.bam
rm ENCFF257HEE.bam
# This BAM file has already been sorted, so we skip the sorting step.
sort_index_idxstats_bam('/project2/xinhe/kevinluo/footprint_clustering/data/DNaseseq/K562/DNaseseq_K562_alignments_sorted_hg38.bam', sort=FALSE, index=TRUE, idxstats=TRUE)
count_genome_cuts(bam_file='/project2/xinhe/kevinluo/footprint_clustering/data/DNaseseq/K562/DNaseseq_K562_alignments_sorted_hg38.bam',
chrom_size_file='/project2/xinhe/kevinluo/footprint_clustering/data/ref_genome/hg38.chrom.sizes',
data_type='DNase',
outdir='/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/',
outname='K562.DNase')
We use ATAC-seq reads from K562 cell line (ENCODE ID:
ENCSR483RKN
) for example.
We first sort and index the BAM file, and obtain the total number of mapped reads from the idxstats file, which will be used later when normalizing read counts by library sizes.
module load samtools
mkdir -p /project2/xinhe/kevinluo/footprint_clustering/data/ATACseq/K562
cd /project2/xinhe/kevinluo/footprint_clustering/data/ATACseq/K562
# Download the BAM file from ENCODE
wget https://www.encodeproject.org/files/ENCFF512VEZ/@@download/ENCFF512VEZ.bam
wget https://www.encodeproject.org/files/ENCFF987XOV/@@download/ENCFF987XOV.bam
# Rename the bam file
mv ENCFF512VEZ.bam ATACseq_K562_alignments_rep1_ENCFF512VEZ_hg38.bam
mv ENCFF987XOV.bam ATACseq_K562_alignments_rep2_ENCFF987XOV_hg38.bam
samtools merge ATACseq_K562_alignments_merged_hg38.bam ATACseq_K562_alignments_rep1_ENCFF512VEZ_hg38.bam ATACseq_K562_alignments_rep2_ENCFF987XOV_hg38.bam
samtools sort ATACseq_K562_alignments_merged_hg38.bam -o ATACseq_K562_alignments_merged_sorted_hg38.bam
rm ATACseq_K562_alignments_merged_hg38.bam
rm ATACseq_K562_alignments_rep1_ENCFF512VEZ_hg38.bam
rm ATACseq_K562_alignments_rep2_ENCFF987XOV_hg38.bam
# This BAM file has already been sorted, so we skip the sorting step.
sort_index_idxstats_bam('/project2/xinhe/kevinluo/footprint_clustering/data/ATACseq/K562/ATACseq_K562_alignments_merged_sorted_hg38.bam', sort=FALSE, index=TRUE, idxstats=TRUE)
count_genome_cuts(bam_file='/project2/xinhe/kevinluo/footprint_clustering/data/ATACseq/K562/ATACseq_K562_alignments_merged_sorted_hg38.bam',
chrom_size_file='/project2/xinhe/kevinluo/footprint_clustering/data/ref_genome/hg38.chrom.sizes',
data_type='ATAC',
outdir='/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/',
outname='K562.ATAC')
CTCF
sites <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/CTCF_MA0139.2_1e-5.candidate.sites.rds')
count_matrix <- get_sites_counts(sites,
genomecount_dir='/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/',
genomecount_name='K562.DNase')
saveRDS(count_matrix, '/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/CTCF.K562.DNase.counts.mat.rds')
REST
sites <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/REST_MA0138.3_1e-5.candidate.sites.rds')
count_matrix <- get_sites_counts(sites,
genomecount_dir='/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/',
genomecount_name='K562.DNase')
saveRDS(count_matrix, '/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/REST.K562.DNase.counts.mat.rds')
NRF1
sites <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/NRF1_MA0506.1_1e-5.candidate.sites.rds')
count_matrix <- get_sites_counts(sites,
genomecount_dir='/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/',
genomecount_name='K562.DNase')
saveRDS(count_matrix, '/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/NRF1.K562.DNase.counts.mat.rds')
CTCF
sites <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/CTCF_MA0139.2_1e-5.candidate.sites.rds')
count_matrix <- get_sites_counts(sites,
genomecount_dir='/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/',
genomecount_name='K562.ATAC')
saveRDS(count_matrix, '/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/CTCF.K562.ATAC.counts.mat.rds')
CTCF (ENCSR483RKN)
sites <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/CTCF_MA0139.2_1e-5.candidate.sites.rds')
count_matrix <- get_sites_counts(sites,
genomecount_dir='/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/',
genomecount_name='K562.ATAC.ENCSR483RKN')
saveRDS(count_matrix, '/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/CTCF.K562.ATAC.ENCSR483RKN.counts.mat.rds')
REST
sites <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/REST_MA0138.3_1e-5.candidate.sites.rds')
count_matrix <- get_sites_counts(sites,
genomecount_dir='/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/',
genomecount_name='K562.ATAC')
saveRDS(count_matrix, '/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/REST.K562.ATAC.counts.mat.rds')
NRF1
sites <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/NRF1_MA0506.1_1e-5.candidate.sites.rds')
count_matrix <- get_sites_counts(sites,
genomecount_dir='/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/',
genomecount_name='K562.ATAC')
saveRDS(count_matrix, '/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/NRF1.K562.ATAC.counts.mat.rds')
Download CTCF K562 ChIP-seq BAM files (ENCODE ID:
ENCSR000EGM
).
mkdir -p /project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562
cd /project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562
# Download the ChIP-seq BAM files
wget https://www.encodeproject.org/files/ENCFF172KOJ/@@download/ENCFF172KOJ.bam
wget https://www.encodeproject.org/files/ENCFF265ZSP/@@download/ENCFF265ZSP.bam
# Rename the BAM files
mv ENCFF172KOJ.bam CTCF_K562_ChIPseq_rep1_ENCFF430XCG_hg38.bam
mv ENCFF265ZSP.bam CTCF_K562_ChIPseq_rep2_ENCFF794BPW_hg38.bam
Download CTCF ChIP-seq peaks from
cd /project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562
# Download the ChIP-seq peaks
wget https://www.encodeproject.org/files/ENCFF660GHM/@@download/ENCFF660GHM.bed.gz
# Rename the peak files
mv ENCFF660GHM.bed.gz CTCF.K562.ChIPseq.peaks.bed.gz
Sort and index the BAM files and obtain the number of mapped reads.
# The BAM files have already been sorted, so we skip the sorting step.
sort_index_idxstats_bam('/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/CTCF_K562_ChIPseq_rep1_ENCFF430XCG_hg38.bam', sort=FALSE, index=TRUE, idxstats=TRUE)
sort_index_idxstats_bam('/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/CTCF_K562_ChIPseq_rep2_ENCFF794BPW_hg38.bam', sort=FALSE, index=TRUE, idxstats=TRUE)
Count ChIP-seq reads around candidate sites (merge ChIP-seq replicates), and normalize to the reference ChIP-seq library size (default: 20 million).
sites <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/CTCF_MA0139.2_1e-5.candidate.sites.rds')
sites_chip <- count_normalize_chip(sites,
chip_bam_files=c('/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/CTCF_K562_ChIPseq_rep1_ENCFF430XCG_hg38.bam',
'/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/CTCF_K562_ChIPseq_rep2_ENCFF794BPW_hg38.bam'),
chrom_size_file='/project2/xinhe/kevinluo/footprint_clustering/data/ref_genome/hg38.chrom.sizes')
Add binary ChIP labels from ChIP-seq peaks
sites_chip_labels <- add_chip_peak_labels_to_sites(sites_chip,chip_peak_file='/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/CTCF.K562.ChIPseq.peaks.bed.gz')
saveRDS(sites_chip_labels, '/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/CTCF.K562.sites.chip.labels.rds')
Download CTCF K562 ChIP-seq BAM files (ENCODE ID:
ENCSR000DWE
).
cd /project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562
# Download the ChIP-seq BAM files
wget https://www.encodeproject.org/files/ENCFF800GVR/@@download/ENCFF800GVR.bam
wget https://www.encodeproject.org/files/ENCFF196QVZ/@@download/ENCFF196QVZ.bam
# Rename the BAM files
mv ENCFF800GVR.bam CTCF_K562_ChIPseq_UW_rep1_ENCFF800GVR_hg38.bam
mv ENCFF196QVZ.bam CTCF_K562_ChIPseq_UW_rep2_ENCFF196QVZ_hg38.bam
Download CTCF ChIP-seq peaks from
cd /project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562
# Download the ChIP-seq peaks
wget https://www.encodeproject.org/files/ENCFF736NYC/@@download/ENCFF736NYC.bed.gz
# Rename the peak files
mv ENCFF736NYC.bed.gz CTCF.K562.ChIPseq.UW.peaks.bed.gz
Sort and index the BAM files and obtain the number of mapped reads.
# The BAM files have already been sorted, so we skip the sorting step.
sort_index_idxstats_bam('/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/CTCF_K562_ChIPseq_UW_rep1_ENCFF800GVR_hg38.bam', sort=FALSE, index=TRUE, idxstats=TRUE)
sort_index_idxstats_bam('/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/CTCF_K562_ChIPseq_UW_rep2_ENCFF196QVZ_hg38.bam', sort=FALSE, index=TRUE, idxstats=TRUE)
Count ChIP-seq reads around candidate sites (merge ChIP-seq replicates), and normalize to the reference ChIP-seq library size (default: 20 million).
sites <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/CTCF_MA0139.2_1e-5.candidate.sites.rds')
sites_chip <- count_normalize_chip(sites,
chip_bam_files=c('/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/CTCF_K562_ChIPseq_UW_rep1_ENCFF800GVR_hg38.bam',
'/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/CTCF_K562_ChIPseq_UW_rep2_ENCFF196QVZ_hg38.bam'),
chrom_size_file='/project2/xinhe/kevinluo/footprint_clustering/data/ref_genome/hg38.chrom.sizes')
Add binary ChIP labels from ChIP-seq peaks
sites_chip_labels <- add_chip_peak_labels_to_sites(sites_chip,chip_peak_file='/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/CTCF.K562.ChIPseq.UW.peaks.bed.gz')
saveRDS(sites_chip_labels, '/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/CTCF.K562.UW.sites.chip.labels.rds')
Download CTCF K562 ChIP-seq BAM files (ENCODE ID:
ENCSR000AKO
).
cd /project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562
# Download the ChIP-seq BAM files
wget https://www.encodeproject.org/files/ENCFF834MPG/@@download/ENCFF834MPG.bam
wget https://www.encodeproject.org/files/ENCFF173QSV/@@download/ENCFF173QSV.bam
# Rename the BAM files
mv ENCFF834MPG.bam CTCF_K562_ChIPseq_Broad_rep1_ENCFF834MPG_hg38.bam
mv ENCFF173QSV.bam CTCF_K562_ChIPseq_Broad_rep2_ENCFF173QSV_hg38.bam
Download CTCF ChIP-seq peaks from
cd /project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562
# Download the ChIP-seq peaks
wget https://www.encodeproject.org/files/ENCFF769AUF/@@download/ENCFF769AUF.bed.gz
# Rename the peak files
mv ENCFF769AUF.bed.gz CTCF.K562.ChIPseq.Broad.peaks.bed.gz
Sort and index the BAM files and obtain the number of mapped reads.
# The BAM files have already been sorted, so we skip the sorting step.
sort_index_idxstats_bam('/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/CTCF_K562_ChIPseq_Broad_rep1_ENCFF834MPG_hg38.bam', sort=FALSE, index=TRUE, idxstats=TRUE)
sort_index_idxstats_bam('/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/CTCF_K562_ChIPseq_Broad_rep2_ENCFF173QSV_hg38.bam', sort=FALSE, index=TRUE, idxstats=TRUE)
Count ChIP-seq reads around candidate sites (merge ChIP-seq replicates), and normalize to the reference ChIP-seq library size (default: 20 million).
sites <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/CTCF_MA0139.2_1e-5.candidate.sites.rds')
sites_chip <- count_normalize_chip(sites,
chip_bam_files=c('/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/CTCF_K562_ChIPseq_Broad_rep1_ENCFF834MPG_hg38.bam',
'/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/CTCF_K562_ChIPseq_Broad_rep2_ENCFF173QSV_hg38.bam'),
chrom_size_file='/project2/xinhe/kevinluo/footprint_clustering/data/ref_genome/hg38.chrom.sizes')
Add binary ChIP labels from ChIP-seq peaks
sites_chip_labels <- add_chip_peak_labels_to_sites(sites_chip,chip_peak_file='/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/CTCF.K562.ChIPseq.Broad.peaks.bed.gz')
saveRDS(sites_chip_labels, '/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/CTCF.K562.Broad.sites.chip.labels.rds')
Download REST K562 ChIP-seq BAM files (ENCODE ID:
ENCSR137ZMQ
).
mkdir -p /project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562
cd /project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562
# Download the ChIP-seq BAM files
wget https://www.encodeproject.org/files/ENCFF116CTI/@@download/ENCFF116CTI.bam
wget https://www.encodeproject.org/files/ENCFF778MNM/@@download/ENCFF778MNM.bam
# Rename the BAM files
mv ENCFF116CTI.bam REST_K562_ChIPseq_rep1_ENCFF430XCG_hg38.bam
mv ENCFF778MNM.bam REST_K562_ChIPseq_rep2_ENCFF794BPW_hg38.bam
Download REST ChIP-seq peaks
cd /project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562
# Download the ChIP-seq peaks
wget https://www.encodeproject.org/files/ENCFF761YYL/@@download/ENCFF761YYL.bed.gz
# Rename the peak files
mv ENCFF761YYL.bed.gz REST.K562.ChIPseq.peaks.bed.gz
Sort and index the BAM files and obtain the number of mapped reads.
# The BAM files have already been sorted, so we skip the sorting step.
sort_index_idxstats_bam('/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/REST_K562_ChIPseq_rep1_ENCFF430XCG_hg38.bam', sort=FALSE, index=TRUE, idxstats=TRUE)
sort_index_idxstats_bam('/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/REST_K562_ChIPseq_rep2_ENCFF794BPW_hg38.bam', sort=FALSE, index=TRUE, idxstats=TRUE)
Count ChIP-seq reads around candidate sites (merge ChIP-seq replicates), and normalize to the reference ChIP-seq library size (default: 20 million).
sites <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/REST_MA0138.3_1e-5.candidate.sites.rds')
sites_chip <- count_normalize_chip(sites,
chip_bam_files=c('/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/REST_K562_ChIPseq_rep1_ENCFF430XCG_hg38.bam',
'/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/REST_K562_ChIPseq_rep2_ENCFF794BPW_hg38.bam'),
chrom_size_file='/project2/xinhe/kevinluo/footprint_clustering/data/ref_genome/hg38.chrom.sizes')
Add binary ChIP labels from ChIP-seq peaks
sites_chip_labels <- add_chip_peak_labels_to_sites(sites_chip,chip_peak_file='/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/REST.K562.ChIPseq.peaks.bed.gz')
saveRDS(sites_chip_labels, '/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/REST.K562.sites.chip.labels.rds')
Download NRF1 K562 ChIP-seq BAM files (ENCODE ID:
ENCSR837EYC
).
mkdir -p /project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562
cd /project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562
# Download the ChIP-seq BAM files
wget https://www.encodeproject.org/files/ENCFF265VZX/@@download/ENCFF265VZX.bam
wget https://www.encodeproject.org/files/ENCFF677KJK/@@download/ENCFF677KJK.bam
# Rename the BAM files
mv ENCFF265VZX.bam NRF1_K562_ChIPseq_rep1_ENCFF265VZX_hg38.bam
mv ENCFF677KJK.bam NRF1_K562_ChIPseq_rep2_ENCFF677KJK_hg38.bam
Download NRF1 ChIP-seq peaks
cd /project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562
# Download the ChIP-seq peaks
wget https://www.encodeproject.org/files/ENCFF259YUE/@@download/ENCFF259YUE.bed.gz
# Rename the peak files
mv ENCFF259YUE.bed.gz NRF1.K562.ChIPseq.peaks.bed.gz
Sort and index the BAM files and obtain the number of mapped reads.
# The BAM files have already been sorted, so we skip the sorting step.
sort_index_idxstats_bam('/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/NRF1_K562_ChIPseq_rep1_ENCFF265VZX_hg38.bam', sort=FALSE, index=TRUE, idxstats=TRUE)
sort_index_idxstats_bam('/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/NRF1_K562_ChIPseq_rep2_ENCFF677KJK_hg38.bam', sort=FALSE, index=TRUE, idxstats=TRUE)
Count ChIP-seq reads around candidate sites (merge ChIP-seq replicates), and normalize to the reference ChIP-seq library size (default: 20 million).
sites <- readRDS('/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/NRF1_MA0506.1_1e-5.candidate.sites.rds')
sites_chip <- count_normalize_chip(sites,
chip_bam_files=c('/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/NRF1_K562_ChIPseq_rep1_ENCFF265VZX_hg38.bam',
'/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/NRF1_K562_ChIPseq_rep2_ENCFF677KJK_hg38.bam'),
chrom_size_file='/project2/xinhe/kevinluo/footprint_clustering/data/ref_genome/hg38.chrom.sizes')
Add binary ChIP labels from ChIP-seq peaks
sites_chip_labels <- add_chip_peak_labels_to_sites(sites_chip,chip_peak_file='/project2/xinhe/kevinluo/footprint_clustering/data/ChIPseq/K562/NRF1.K562.ChIPseq.peaks.bed.gz')
saveRDS(sites_chip_labels, '/project2/xinhe/kevinluo/footprint_clustering/processed_data/hg38/NRF1.K562.sites.chip.labels.rds')
sessionInfo()