Last updated: 2022-09-20

Checks: 7 0

Knit directory: GSFA_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220524) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 06a9657. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  Rplots.pdf
    Untracked:  analysis/check_Tcells_datasets.Rmd
    Untracked:  analysis/fscLVM_analysis.Rmd
    Untracked:  analysis/spca_LUHMES_data.Rmd
    Untracked:  analysis/test_seurat.Rmd
    Untracked:  code/gsfa_negctrl_job.sbatch
    Untracked:  code/music_LUHMES_Yifan.R
    Untracked:  code/plotting_functions.R
    Untracked:  code/run_fscLVM_LUHMES_data.R
    Untracked:  code/run_gsfa_2groups_negctrl.R
    Untracked:  code/run_gsfa_negctrl.R
    Untracked:  code/run_music_LUHMES.R
    Untracked:  code/run_music_LUHMES_data.sbatch
    Untracked:  code/run_music_LUHMES_data_20topics.R
    Untracked:  code/run_music_LUHMES_data_20topics.sbatch
    Untracked:  code/run_sceptre_Tcells_data.sbatch
    Untracked:  code/run_sceptre_Tcells_stimulated_data.sbatch
    Untracked:  code/run_sceptre_Tcells_test_data.sbatch
    Untracked:  code/run_sceptre_Tcells_unstimulated_data.sbatch
    Untracked:  code/run_sceptre_permuted_data.sbatch
    Untracked:  code/run_spca_LUHMES.R
    Untracked:  code/run_spca_TCells.R
    Untracked:  code/run_twostep_clustering_LUHMES_data.sbatch
    Untracked:  code/run_twostep_clustering_Tcells_data.sbatch
    Untracked:  code/run_unguided_gsfa_LUHMES.R
    Untracked:  code/run_unguided_gsfa_LUHMES.sbatch
    Untracked:  code/run_unguided_gsfa_Tcells.R
    Untracked:  code/run_unguided_gsfa_Tcells.sbatch
    Untracked:  code/sceptre_LUHMES_data.R
    Untracked:  code/sceptre_Tcells_stimulated_data.R
    Untracked:  code/sceptre_Tcells_unstimulated_data.R
    Untracked:  code/sceptre_permutation_analysis.R
    Untracked:  code/sceptre_permute_analysis.R
    Untracked:  code/seurat_sim_fpr_tpr.R
    Untracked:  code/unguided_GFSA_mixture_normal_prior.cpp

Unstaged changes:
    Modified:   analysis/sceptre_TCells_data.Rmd
    Modified:   analysis/unguided_gsfa_LUHMES_data.Rmd
    Modified:   code/run_sceptre_LUHMES_data.R
    Modified:   code/run_sceptre_LUHMES_data.sbatch
    Modified:   code/run_sceptre_LUHMES_permuted_data.R
    Modified:   code/run_sceptre_Tcells_permuted_data.R
    Modified:   code/run_sceptre_cropseq_data.sbatch
    Modified:   code/run_twostep_clustering_LUHMES_data.R
    Modified:   code/sceptre_analysis.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/unguided_gsfa_Tcells_data.Rmd) and HTML (docs/unguided_gsfa_Tcells_data.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 06a9657 kevinlkx 2022-09-20 updated the size of qq plots
html d712d7e kevinlkx 2022-09-03 Build site.
Rmd 3b187bb kevinlkx 2022-09-03 updated qq plots
html d8962e8 kevinlkx 2022-09-01 Build site.
Rmd ccd0e1c kevinlkx 2022-09-01 updated colors for qq plot
html 0edbbc2 kevinlkx 2022-09-01 Build site.
Rmd 182fbec kevinlkx 2022-09-01 added QQ plot for GSFA vs MAST
html 7337ae0 kevinlkx 2022-08-31 Build site.
Rmd c56c0d5 kevinlkx 2022-08-31 added qqplots for combined results
html 43d8586 kevinlkx 2022-08-25 Build site.
Rmd 81f440d kevinlkx 2022-08-25 unguided T cell res

mkdir -p /project2/xinhe/kevinluo/GSFA/data

cp /project2/xinhe/yifan/Factor_analysis/Stimulated_T_Cells/processed_data/deviance_residual.all_T_cells_merged_top_6k.batch_uncorrected.rds \
  /project2/xinhe/kevinluo/GSFA/unguided_GSFA/Stimulated_T_Cells/processed_data/deviance_residual.all_T_cells_merged_top_6k.batch_uncorrected.rds

cp /project2/xinhe/yifan/Factor_analysis/Stimulated_T_Cells/processed_data/metadata.all_T_cells_merged.rds \
  /project2/xinhe/kevinluo/GSFA/unguided_GSFA/Stimulated_T_Cells/processed_data/metadata.all_T_cells_merged.rds

Analysis scripts

  • R script: /home/kaixuan/projects/GSFA_analysis/code/run_unguided_gsfa_Tcells.R
  • sbatch script: /home/kaixuan/projects/GSFA_analysis/code/run_unguided_gsfa_Tcells.sbatch
mkdir -p /project2/xinhe/kevinluo/GSFA/unguided_GSFA/log
cd /project2/xinhe/kevinluo/GSFA/unguided_GSFA/log

sbatch ~/projects/GSFA_analysis/code/run_unguided_gsfa_Tcells.sbatch

Load packages

suppressPackageStartupMessages(library(data.table))
# suppressPackageStartupMessages(library(Seurat))
suppressPackageStartupMessages(library(ComplexHeatmap))
suppressPackageStartupMessages(library(ggplot2))
require(reshape2)
require(dplyr)
require(ComplexHeatmap)
theme_set(theme_bw() + theme(plot.title = element_text(size = 14, hjust = 0.5),
                             axis.title = element_text(size = 14),
                             axis.text = element_text(size = 13),
                             legend.title = element_text(size = 13),
                             legend.text = element_text(size = 12),
                             panel.grid.minor = element_blank())
)
suppressPackageStartupMessages(library(gridExtra))
source("code/plotting_functions.R")

Set directories

res_dir <- "/project2/xinhe/kevinluo/GSFA/unguided_GSFA/Stimulated_T_Cells/"
dir.create(res_dir, recursive = TRUE, showWarnings = FALSE)

Load unguided GSFA result

fit <- readRDS("/project2/xinhe/kevinluo/GSFA/unguided_GSFA/Stimulated_T_Cells/unguided_gsfa_output/All.gibbs_obj_k20.svd.light.rds")

Load the cell by perturbation matrix.

data_folder <- "/project2/xinhe/kevinluo/GSFA/unguided_GSFA/Stimulated_T_Cells/"
metadata <- readRDS(paste0(data_folder, "processed_data/metadata.all_T_cells_merged.rds"))
sample_group <- endsWith(metadata$orig.ident, "S") * 1 # 0: unstimulated, 1: stimulated
metadata <- metadata[which(sample_group == 1), ]

# Perturbation info:
G_mat <- metadata[, 4:24]
G_mat <- as.matrix(G_mat)
KO_names <- colnames(G_mat)
negctrl_index <- which(KO_names == "NonTarget")

Use linear regression to test for the association between perturbations and factors

Z_pm <- fit$posterior_means$Z_pm
if(!all.equal(rownames(G_mat), rownames(Z_pm))){
  stop("Rownames of G_mat do not match with Z_pm!")
}

perturb_matrix <- G_mat
factor_matrix <- Z_pm

summary_df <- expand.grid(colnames(perturb_matrix), colnames(factor_matrix))
colnames(summary_df) <- c("perturb", "factor")

summary_df <- cbind(summary_df, beta = NA, statistic = NA, pval = NA)

for(i in 1:nrow(summary_df)){
  df <- data.frame(perturb = perturb_matrix[,summary_df$perturb[i]], 
                   factor = factor_matrix[,summary_df$factor[i]])
  lm.res <- lm(factor ~ perturb, data=df)
  summary_df[i, ]$beta <- summary(lm.res)$coefficients["perturb",1]
  summary_df[i, ]$statistic <- summary(lm.res)$coefficients["perturb",3]
  summary_df[i, ]$pval <- summary(lm.res)$coefficients["perturb",4]
}

summary_df$fdr <- p.adjust(summary_df$pval, method = "BH")
summary_df$bonferroni_adj <- p.adjust(summary_df$pval, method = "bonferroni")

saveRDS(summary_df, file = file.path(res_dir, "Tcells_simultated_unguidedGSFA_guide_factor_lm_summary_df.rds"))

stat_mat <- reshape2::dcast(summary_df %>% dplyr::select(perturb, factor, statistic), perturb ~ factor, value.var = "statistic") 
rownames(stat_mat) <- stat_mat$perturb
stat_mat$perturb <- NULL
stat_mat <- as.matrix(stat_mat)

beta_mat <- reshape2::dcast(summary_df %>% dplyr::select(perturb, factor, beta), perturb ~ factor, value.var = "beta")
rownames(beta_mat) <- beta_mat$perturb
beta_mat$perturb <- NULL
beta_mat <- as.matrix(beta_mat)

fdr_mat <- reshape2::dcast(summary_df %>% dplyr::select(perturb, factor, fdr), perturb ~ factor, value.var = "fdr")
rownames(fdr_mat) <- fdr_mat$perturb
fdr_mat$perturb <- NULL
fdr_mat <- as.matrix(fdr_mat)

bonferroni_mat <- reshape2::dcast(summary_df %>% dplyr::select(perturb, factor, bonferroni_adj), 
                                  perturb ~ factor, value.var = "bonferroni_adj")
rownames(bonferroni_mat) <- bonferroni_mat$perturb
bonferroni_mat$perturb <- NULL
bonferroni_mat <- as.matrix(bonferroni_mat)
# pdf(file.path(res_dir, "stat-fdr-dotplot.pdf"), width = 9, height = 5.5)
KO_names <- rownames(fdr_mat)
dotplot_effectsize(t(beta_mat), t(fdr_mat),
                   reorder_markers = c(KO_names[KO_names!="NonTarget"], "NonTarget"),
                   color_lgd_title = "Estimated effect size",
                   size_lgd_title = "FDR",
                   max_score = 0.6,
                   min_score = -0.6,
                   by_score = 0.3) + coord_flip()

Version Author Date
43d8586 kevinlkx 2022-08-25
# dev.off()

Plot perturbation ~ cluster associations (show Bonferroni adjusted p-values)

# pdf(file.path(res_dir, "stat-bonferroni-dotplot.pdf"), width = 9, height = 5.5)
KO_names <- rownames(bonferroni_mat)
dotplot_effectsize(t(beta_mat), t(bonferroni_mat),
                   reorder_markers = c(KO_names[KO_names!="NonTarget"], "NonTarget"),
                   color_lgd_title = "Estimated effect size",
                   size_lgd_title = "Bonferroni\nadjusted p-value",
                   max_score = 0.6,
                   min_score = -0.6,
                   by_score = 0.3) + coord_flip()

Version Author Date
43d8586 kevinlkx 2022-08-25
# dev.off()

Find DE genes for each factor and assign DE genes to associated perturbations

First, find DE genes for each factor using F matrix (PIP>0.95).

Then, for each perturbation, find the associated factors, and pull the DE genes for those factors.

F_pm <- fit$posterior_means$F_pm
# dim(F_pm)
# feature.names <- data.frame(fread(file.path(data_dir, "LUHMES_GSM4219575_Run1_genes.tsv.gz"),
#                                   header = FALSE), stringsAsFactors = FALSE)

de.genes.factors <- vector("list", length = ncol(F_pm))
names(de.genes.factors) <- colnames(F_pm)
for( i in 1:length(de.genes.factors)){
  de_genes <- rownames(F_pm[F_pm[,i] > 0.95,])
  # de_genes <- feature.names$V2[match(de_genes, feature.names$V1)]
  de.genes.factors[[i]] <- de_genes
}

Number of DE genes for each perturbation (FDR < 0.05)

perturb_names <- colnames(perturb_matrix)
perturb_names <- c("NonTarget", perturb_names[perturb_names!="NonTarget"])

de.genes.perturbs <- vector("list", length = length(perturb_names))
names(de.genes.perturbs) <- perturb_names

for(i in 1:length(de.genes.perturbs)){
  perturb_name <- names(de.genes.perturbs)[i]
  associated_factors <- colnames(fdr_mat)[which(fdr_mat[perturb_name, ] < 0.05)]
  if(length(associated_factors) > 0){
    de.genes.perturbs[[i]] <- unique(unlist(de.genes.factors[associated_factors]))
  }
}

num.de.genes.perturbs <- sapply(de.genes.perturbs, length)

unguided_GSFA_fdr0.05_genes <- de.genes.perturbs

dge_plot_df <- data.frame(Perturbation = names(num.de.genes.perturbs), Num_DEGs = num.de.genes.perturbs)
dge_plot_df$Perturbation <- factor(dge_plot_df$Perturbation, levels = names(num.de.genes.perturbs))

# pdf(file.path(res_dir, "count-de-genes.pdf"), width = 13, height = 5)
ggplot(data=dge_plot_df, aes(x = Perturbation, y = Num_DEGs+1)) +
  geom_bar(position = "dodge", stat = "identity") +
  geom_text(aes(label = Num_DEGs), position=position_dodge(width=0.9), vjust=-0.25) +
  scale_y_log10() +
  scale_fill_brewer(palette = "Set2") +
  labs(x = "Target gene",
       y = "Number of DEGs",
       title = "Number of DEGs detected by unguided GSFA") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 12),
        legend.position = "bottom",
        legend.text = element_text(size = 13))

Version Author Date
43d8586 kevinlkx 2022-08-25
# dev.off()

Number of DE genes for each perturbation (Bonferroni adjusted p-value < 0.05)

perturb_names <- colnames(perturb_matrix)
perturb_names <- c("NonTarget", perturb_names[perturb_names!="NonTarget"])

de.genes.perturbs <- vector("list", length = length(perturb_names))
names(de.genes.perturbs) <- perturb_names

for(i in 1:length(de.genes.perturbs)){
  perturb_name <- names(de.genes.perturbs)[i]
  associated_factors <- colnames(bonferroni_mat)[which(bonferroni_mat[perturb_name, ] < 0.05)]
  if(length(associated_factors) > 0){
    de.genes.perturbs[[i]] <- unique(unlist(de.genes.factors[associated_factors]))
  }
}

num.de.genes.perturbs <- sapply(de.genes.perturbs, length)
unguided_GSFA_bonferroni0.05_genes <- de.genes.perturbs

dge_plot_df <- data.frame(Perturbation = names(num.de.genes.perturbs), Num_DEGs = num.de.genes.perturbs)
dge_plot_df$Perturbation <- factor(dge_plot_df$Perturbation, levels = names(num.de.genes.perturbs))

ggplot(data=dge_plot_df, aes(x = Perturbation, y = Num_DEGs+1)) +
  geom_bar(position = "dodge", stat = "identity") +
  geom_text(aes(label = Num_DEGs), position=position_dodge(width=0.9), vjust=-0.25) +
  scale_y_log10() +
  scale_fill_brewer(palette = "Set2") +
  labs(x = "Target gene",
       y = "Number of DEGs",
       title = "Number of DEGs detected by unguided GSFA") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 12),
        legend.position = "bottom",
        legend.text = element_text(size = 13))

Version Author Date
43d8586 kevinlkx 2022-08-25

Compare single-gene DE p-value distributions between GSFA and unguided GSFA

fdr_cutoff <- 0.05
lfsr_cutoff <- 0.05

Load the output of GSFA fit_gsfa_multivar() run.

data_folder <- "/project2/xinhe/yifan/Factor_analysis/Stimulated_T_Cells/"
fit <- readRDS(paste0(data_folder,
                      "gsfa_output_detect_01/all_uncorrected_by_group.use_negctrl/All.gibbs_obj_k20.svd_negctrl.restart.light.rds"))
gibbs_PM <- fit$posterior_means
lfsr_mat1 <- fit$lfsr1[, -ncol(fit$lfsr1)]
lfsr_mat0 <- fit$lfsr0[, -ncol(fit$lfsr0)]
total_effect1 <- fit$total_effect1[, -ncol(fit$total_effect1)]
total_effect0 <- fit$total_effect0[, -ncol(fit$total_effect0)]
KO_names <- colnames(lfsr_mat1)

DEGs detected by GSFA

   ARID1A      BTLA  C10orf54      CBLB      CD3D       CD5    CDKN1B      DGKA 
      393       107        66       631         0       645       468        32 
     DGKZ    HAVCR2      LAG3      LCP2     MEF2D NonTarget     PDCD1     RASA2 
      113        35         1       589        15         0         0       277 
    SOCS1     STAT6     TCEB2   TMEM222   TNFRSF9 
      356         1       300         4        14 

Load MAST single-gene DE result

guides <- KO_names[KO_names!="NonTarget"]

mast_list <- list()
for (m in guides){
  fname <- paste0(data_folder, "processed_data/MAST/all_by_stim_negctrl/gRNA_", 
                  m, ".dev_res_top6k.vs_negctrl.rds")
  tmp_df <- readRDS(fname)
  tmp_df$geneID <- rownames(tmp_df)
  tmp_df <- tmp_df %>% dplyr::rename(FDR = fdr, PValue = pval)
  mast_list[[m]] <- tmp_df
}
mast_signif_counts <- sapply(mast_list, function(x){filter(x, FDR < fdr_cutoff) %>% nrow()})

QQ-plots of MAST DE p-values for the GSFA genes vs unguided GSFA genes.

qqplots <- list()
for(i in 1:length(guides)){
  guide <- guides[i]
  mast_res <- mast_list[[guide]]
  unguided_gsfa_de_genes <- unguided_GSFA_fdr0.05_genes[[guide]]
  gsfa_de_genes <- gsfa_sig_genes[[guide]]
  unguided_gsfa_de_genes <- intersect(unguided_gsfa_de_genes, rownames(mast_res))
  gsfa_de_genes <- intersect(gsfa_de_genes, rownames(mast_res))
  
  if(length(unguided_gsfa_de_genes)>0 && length(gsfa_de_genes)>0){
    # cat("plot", guide, "\n")
    mast_res$unguided_gsfa_gene <- 0
    mast_res[unguided_gsfa_de_genes, ]$unguided_gsfa_gene <- 1
    mast_res$gsfa_gene <- 0
    mast_res[gsfa_de_genes, ]$gsfa_gene <- 1
    pvalue_list <- list('Unguided GSFA'=dplyr::filter(mast_res,unguided_gsfa_gene==1)$PValue,
                        'GSFA'=dplyr::filter(mast_res,gsfa_gene==1)$PValue,
                        'all genes'=mast_res$PValue)
    qqplots[[guide]] <- qqplot.pvalue(pvalue_list, pointSize = 1, legendSize = 4) + 
      ggtitle(guide) + theme(plot.title = element_text(hjust = 0.5)) +
      scale_colour_discrete(name="Method")
  }
}

grid.arrange(grobs = qqplots, nrow = 5, ncol = 3)

Version Author Date
d712d7e kevinlkx 2022-09-03
7337ae0 kevinlkx 2022-08-31
43d8586 kevinlkx 2022-08-25

Pooling p-values from all perturbations

combined_mast_res <- data.frame()
for(i in 1:length(guides)){
  guide <- guides[i]
  mast_res <- mast_list[[guide]]
  unguided_gsfa_de_genes <- unguided_GSFA_fdr0.05_genes[[guide]]
  gsfa_de_genes <- gsfa_sig_genes[[guide]]
  unguided_gsfa_de_genes <- intersect(unguided_gsfa_de_genes, rownames(mast_res))
  gsfa_de_genes <- intersect(gsfa_de_genes, rownames(mast_res))
  mast_res$unguided_gsfa_gene <- 0
  if(length(unguided_gsfa_de_genes) >0){
    mast_res[unguided_gsfa_de_genes, ]$unguided_gsfa_gene <- 1
  }
  mast_res$gsfa_gene <- 0
  if(length(gsfa_de_genes) >0){
    mast_res[gsfa_de_genes, ]$gsfa_gene <- 1
  }
  combined_mast_res <- rbind(combined_mast_res, mast_res)
}

pvalue_list <- list('Unguided GSFA'=dplyr::filter(combined_mast_res,unguided_gsfa_gene==1)$PValue,
                    'GSFA'=dplyr::filter(combined_mast_res,gsfa_gene==1)$PValue,
                    'all genes'=combined_mast_res$PValue)

# pdf(file.path(res_dir, "qqplot_all_combined.pdf"))
qqplot.pvalue(pvalue_list, pointSize = 1, legendSize = 4) + 
      ggtitle("") + theme(plot.title = element_text(hjust = 0.5)) +
      scale_colour_discrete(name="Method")

Version Author Date
d712d7e kevinlkx 2022-09-03
7337ae0 kevinlkx 2022-08-31
# dev.off()

QQ-plots of MAST DE p-values for the GSFA only genes vs unguided GSFA only genes.

qqplots <- list()
for(i in 1:length(guides)){
  guide <- guides[i]
  mast_res <- mast_list[[guide]]
  unguided_gsfa_de_genes <- unguided_GSFA_fdr0.05_genes[[guide]]
  gsfa_de_genes <- gsfa_sig_genes[[guide]]
  unguided_gsfa_de_genes <- intersect(unguided_gsfa_de_genes, rownames(mast_res))
  gsfa_de_genes <- intersect(gsfa_de_genes, rownames(mast_res))
  
  unguided_gsfa_only_genes <- setdiff(unguided_gsfa_de_genes, gsfa_de_genes)
  gsfa_only_genes <- setdiff(gsfa_de_genes, unguided_gsfa_de_genes)

  if(length(unguided_gsfa_only_genes)>0 && length(gsfa_only_genes) >0){
    # cat("plot", guide, "\n")
    mast_res$unguided_gsfa_only_gene <- 0
    mast_res[unguided_gsfa_only_genes, ]$unguided_gsfa_only_gene <- 1
    mast_res$gsfa_only_gene <- 0
    mast_res[gsfa_only_genes, ]$gsfa_only_gene <- 1
    
    pvalue_list <- list('Unguided GSFA only'=dplyr::filter(mast_res,unguided_gsfa_only_gene==1)$PValue,
                        'GSFA only'=dplyr::filter(mast_res,gsfa_only_gene==1)$PValue,
                        'all genes'=mast_res$PValue)
    qqplots[[guide]] <- qqplot.pvalue(pvalue_list, pointSize = 1, legendSize = 4) + 
      ggtitle(guide) + theme(plot.title = element_text(hjust = 0.5)) +
      scale_colour_discrete(name="Method")
  }
}

grid.arrange(grobs = qqplots, nrow = 5, ncol = 3)

Version Author Date
d712d7e kevinlkx 2022-09-03
7337ae0 kevinlkx 2022-08-31
43d8586 kevinlkx 2022-08-25

Pooling p-values from all perturbations

combined_mast_res <- data.frame()
for(i in 1:length(guides)){
  guide <- guides[i]
  mast_res <- mast_list[[guide]]
  unguided_gsfa_de_genes <- unguided_GSFA_fdr0.05_genes[[guide]]
  gsfa_de_genes <- gsfa_sig_genes[[guide]]
  unguided_gsfa_de_genes <- intersect(unguided_gsfa_de_genes, rownames(mast_res))
  gsfa_de_genes <- intersect(gsfa_de_genes, rownames(mast_res))
  mast_res$unguided_gsfa_only_gene <- 0
  if(length(setdiff(unguided_gsfa_de_genes, gsfa_de_genes)) >0){
    mast_res[setdiff(unguided_gsfa_de_genes, gsfa_de_genes), ]$unguided_gsfa_only_gene <- 1
  }
  mast_res$gsfa_only_gene <- 0
  if(length(setdiff(gsfa_de_genes, unguided_gsfa_de_genes)) >0){
    mast_res[setdiff(gsfa_de_genes, unguided_gsfa_de_genes), ]$gsfa_only_gene <- 1
  }
  combined_mast_res <- rbind(combined_mast_res, mast_res)
}

pvalue_list <- list('Unguided GSFA only'=dplyr::filter(combined_mast_res,unguided_gsfa_only_gene==1)$PValue,
                    'GSFA only'=dplyr::filter(combined_mast_res,gsfa_only_gene==1)$PValue,
                    'all genes'=combined_mast_res$PValue)

# pdf(file.path(res_dir, "qqplot_only_combined.pdf"))
qqplot.pvalue(pvalue_list, pointSize = 1, legendSize = 4) + 
      ggtitle("") + theme(plot.title = element_text(hjust = 0.5)) +
      scale_colour_discrete(name="Method") + 
      coord_cartesian(ylim = c(0, 30)) 

Version Author Date
d712d7e kevinlkx 2022-09-03
7337ae0 kevinlkx 2022-08-31
# dev.off()

sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C         LC_TIME=C           
 [4] LC_COLLATE=C         LC_MONETARY=C        LC_MESSAGES=C       
 [7] LC_PAPER=C           LC_NAME=C            LC_ADDRESS=C        
[10] LC_TELEPHONE=C       LC_MEASUREMENT=C     LC_IDENTIFICATION=C 

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
[1] lattice_0.20-45       gridExtra_2.3         dplyr_1.0.9          
[4] reshape2_1.4.4        ggplot2_3.3.6         ComplexHeatmap_2.12.0
[7] data.table_1.14.2     workflowr_1.7.0      

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.8.3        circlize_0.4.15     getPass_0.2-2      
 [4] png_0.1-7           ps_1.7.0            assertthat_0.2.1   
 [7] rprojroot_2.0.3     digest_0.6.29       foreach_1.5.2      
[10] utf8_1.2.2          plyr_1.8.7          R6_2.5.1           
[13] stats4_4.2.0        evaluate_0.15       highr_0.9          
[16] httr_1.4.3          pillar_1.7.0        GlobalOptions_0.1.2
[19] rlang_1.0.2         rstudioapi_0.13     whisker_0.4        
[22] callr_3.7.0         jquerylib_0.1.4     S4Vectors_0.34.0   
[25] GetoptLong_1.0.5    rmarkdown_2.14      labeling_0.4.2     
[28] stringr_1.4.0       munsell_0.5.0       compiler_4.2.0     
[31] httpuv_1.6.5        xfun_0.30           pkgconfig_2.0.3    
[34] BiocGenerics_0.42.0 shape_1.4.6         htmltools_0.5.2    
[37] tidyselect_1.1.2    tibble_3.1.7        IRanges_2.30.0     
[40] codetools_0.2-18    matrixStats_0.62.0  fansi_1.0.3        
[43] withr_2.5.0         crayon_1.5.1        later_1.3.0        
[46] DBI_1.1.3           jsonlite_1.8.0      gtable_0.3.0       
[49] lifecycle_1.0.1     git2r_0.30.1        magrittr_2.0.3     
[52] scales_1.2.0        cli_3.3.0           stringi_1.7.6      
[55] farver_2.1.0        fs_1.5.2            promises_1.2.0.1   
[58] doParallel_1.0.17   bslib_0.3.1         ellipsis_0.3.2     
[61] vctrs_0.4.1         generics_0.1.2      rjson_0.2.21       
[64] RColorBrewer_1.1-3  iterators_1.0.14    tools_4.2.0        
[67] glue_1.6.2          purrr_0.3.4         processx_3.5.3     
[70] parallel_4.2.0      fastmap_1.1.0       yaml_2.3.5         
[73] clue_0.3-61         colorspace_2.0-3    cluster_2.1.3      
[76] knitr_1.39          sass_0.4.1