Last updated: 2022-09-20

Checks: 7 0

Knit directory: GSFA_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220524) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version b7a0c95. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  Rplots.pdf
    Untracked:  analysis/check_Tcells_datasets.Rmd
    Untracked:  analysis/fscLVM_analysis.Rmd
    Untracked:  analysis/spca_LUHMES_data.Rmd
    Untracked:  analysis/test_seurat.Rmd
    Untracked:  code/gsfa_negctrl_job.sbatch
    Untracked:  code/music_LUHMES_Yifan.R
    Untracked:  code/plotting_functions.R
    Untracked:  code/run_fscLVM_LUHMES_data.R
    Untracked:  code/run_gsfa_2groups_negctrl.R
    Untracked:  code/run_gsfa_negctrl.R
    Untracked:  code/run_music_LUHMES.R
    Untracked:  code/run_music_LUHMES_data.sbatch
    Untracked:  code/run_music_LUHMES_data_20topics.R
    Untracked:  code/run_music_LUHMES_data_20topics.sbatch
    Untracked:  code/run_sceptre_Tcells_data.sbatch
    Untracked:  code/run_sceptre_Tcells_stimulated_data.sbatch
    Untracked:  code/run_sceptre_Tcells_test_data.sbatch
    Untracked:  code/run_sceptre_Tcells_unstimulated_data.sbatch
    Untracked:  code/run_sceptre_permuted_data.sbatch
    Untracked:  code/run_spca_LUHMES.R
    Untracked:  code/run_spca_TCells.R
    Untracked:  code/run_twostep_clustering_LUHMES_data.sbatch
    Untracked:  code/run_twostep_clustering_Tcells_data.sbatch
    Untracked:  code/run_unguided_gsfa_LUHMES.R
    Untracked:  code/run_unguided_gsfa_LUHMES.sbatch
    Untracked:  code/run_unguided_gsfa_Tcells.R
    Untracked:  code/run_unguided_gsfa_Tcells.sbatch
    Untracked:  code/sceptre_LUHMES_data.R
    Untracked:  code/sceptre_Tcells_stimulated_data.R
    Untracked:  code/sceptre_Tcells_unstimulated_data.R
    Untracked:  code/sceptre_permutation_analysis.R
    Untracked:  code/sceptre_permute_analysis.R
    Untracked:  code/seurat_sim_fpr_tpr.R
    Untracked:  code/unguided_GFSA_mixture_normal_prior.cpp

Unstaged changes:
    Modified:   analysis/sceptre_TCells_data.Rmd
    Modified:   analysis/twostep_clustering_LUHMES_data.Rmd
    Modified:   code/run_sceptre_LUHMES_data.R
    Modified:   code/run_sceptre_LUHMES_data.sbatch
    Modified:   code/run_sceptre_LUHMES_permuted_data.R
    Modified:   code/run_sceptre_Tcells_permuted_data.R
    Modified:   code/run_sceptre_cropseq_data.sbatch
    Modified:   code/run_twostep_clustering_LUHMES_data.R
    Modified:   code/sceptre_analysis.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/compare_gsfa_mast_degs.Rmd) and HTML (docs/compare_gsfa_mast_degs.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd b7a0c95 kevinlkx 2022-09-20 updated the size of the plots
html 74c9a61 kevinlkx 2022-09-07 Build site.
Rmd d2ea088 kevinlkx 2022-09-07 edited section titles
html cc94b95 kevinlkx 2022-09-07 Build site.
Rmd b492ebf kevinlkx 2022-09-07 removed legend in QQplots for GSFA only pvalues
html c10b536 kevinlkx 2022-09-07 Build site.
Rmd 2c27043 kevinlkx 2022-09-07 added QQplots for all GSFA pvalues
html d8a9602 kevinlkx 2022-09-05 Build site.
Rmd b0c058d kevinlkx 2022-09-05 updated qqplots for gsfa only
html 00603ad kevinlkx 2022-09-03 Build site.
Rmd 9cd02e4 kevinlkx 2022-09-03 updated qq plots
html 7d40768 kevinlkx 2022-09-03 Build site.
Rmd 4af8f3b kevinlkx 2022-09-03 added QQ plots for GSFA only genes

Load packages

suppressPackageStartupMessages(library(data.table))
suppressPackageStartupMessages(library(ggplot2))
require(reshape2)
require(dplyr)
theme_set(theme_bw() + theme(plot.title = element_text(size = 14, hjust = 0.5),
                             axis.title = element_text(size = 14),
                             axis.text = element_text(size = 13),
                             legend.title = element_text(size = 13),
                             legend.text = element_text(size = 12),
                             panel.grid.minor = element_blank())
)
library(ggvenn)
source("code/plotting_functions.R")

Set directories

res_dir <- "/project2/xinhe/kevinluo/GSFA/compare_with_mast/"
dir.create(res_dir, recursive = TRUE, showWarnings = FALSE)

LUHMES data

Load the output of GSFA fit_gsfa_multivar() run.

data_folder <- "/project2/xinhe/yifan/Factor_analysis/LUHMES/"
fit <- readRDS(paste0(data_folder,
                      "gsfa_output_detect_01/use_negctrl/All.gibbs_obj_k20.svd_negctrl.seed_14314.light.rds"))
gibbs_PM <- fit$posterior_means
lfsr_mat <- fit$lfsr[, -ncol(fit$lfsr)]
total_effect <- fit$total_effect[, -ncol(fit$total_effect)]
KO_names <- colnames(lfsr_mat)
guides <- KO_names[KO_names!="Nontargeting"]

DEGs detected by GSFA

lfsr_mat <- lfsr_mat[, guides]
gsfa_degs <- apply(lfsr_mat, 2, function(x){names(x)[x < 0.05]})
sapply(gsfa_degs, length)
  ADNP ARID1B  ASH1L   CHD2   CHD8 CTNND2 DYRK1A  HDAC5  MECP2  MYT1L   POGZ 
   795    310    322    756      0      0     23      0      0      0      0 
  PTEN   RELN  SETD5 
   895      0    466 

Load MAST single-gene DE result

mast_list <- list()
for (m in guides){
  fname <- paste0(data_folder, "processed_data/MAST/dev_top6k_negctrl/gRNA_", m, ".dev_res_top6k.vs_negctrl.rds")
  tmp_df <- readRDS(fname)
  tmp_df$geneID <- rownames(tmp_df)
  tmp_df <- tmp_df %>% dplyr::rename(FDR = fdr, PValue = pval)
  mast_list[[m]] <- tmp_df
}
mast_signif_counts <- sapply(mast_list, function(x){filter(x, FDR < 0.05) %>% nrow()})

DEGs detected by MAST

mast_degs <- lapply(mast_list, function(x){rownames(x)[x$FDR < 0.05]})
sapply(mast_degs, length)
  ADNP ARID1B  ASH1L   CHD2   CHD8 CTNND2 DYRK1A  HDAC5  MECP2  MYT1L   POGZ 
    38     54     15     88      1      0      0      1      1      0      0 
  PTEN   RELN  SETD5 
   207      0      7 

Compare DEGs from GSFA vs MAST

num_deg_guides.df <- data.frame()
for (m in guides){
  shared_degs <- intersect(mast_degs[[m]], gsfa_degs[[m]])
  mast_only_degs <- setdiff(mast_degs[[m]], gsfa_degs[[m]])
  gsfa_only_degs <- setdiff(gsfa_degs[[m]], mast_degs[[m]])
  num_deg_guides.df <- rbind(num_deg_guides.df, 
                             data.frame(guide = m, shared = length(shared_degs), mast_only = length(mast_only_degs), gsfa_only = length(gsfa_only_degs)))
}

all_mast_degs <- unique(unlist(mast_degs))
all_gsfa_degs <- unique(unlist(gsfa_degs))

length(all_gsfa_degs)
length(all_mast_degs)
length(setdiff(all_gsfa_degs, all_mast_degs))
length(setdiff(all_mast_degs, all_gsfa_degs))
length(intersect(all_gsfa_degs, all_mast_degs))

deg_list <- list("GSFA DEGs" = all_gsfa_degs,
                 "MAST DEGs" = all_mast_degs)

ggvenn(deg_list, fill_color = c("#00BA38","#619CFF"), show_percentage = FALSE, set_name_size = 6, text_size = 6)

Version Author Date
c10b536 kevinlkx 2022-09-07
7d40768 kevinlkx 2022-09-03
[1] 1366
[1] 323
[1] 1112
[1] 69
[1] 254

QQ plots comparing GSFA with MAST

combined_mast_res <- data.frame()
for(i in 1:length(guides)){
  guide <- guides[i]
  mast_res <- mast_list[[guide]]
  gsfa_de_genes <- gsfa_degs[[guide]]
  gsfa_de_genes <- intersect(gsfa_de_genes, rownames(mast_res))
  mast_res$gsfa_gene <- 0
  if(length(gsfa_de_genes) >0){
    mast_res[gsfa_de_genes, ]$gsfa_gene <- 1
  }
  combined_mast_res <- rbind(combined_mast_res, mast_res)
}

pvalue_list <- list('GSFA'=dplyr::filter(combined_mast_res,gsfa_gene==1)$PValue,
                    'all genes'=combined_mast_res$PValue)

qqplot.pvalue(pvalue_list, pointSize = 1, legendSize = 4) + 
      ggtitle("") + theme(plot.title = element_text(hjust = 0.5)) +
      scale_colour_discrete(name="Method") + 
      scale_color_manual(values=c("#00BA38","#619CFF"))

Version Author Date
c10b536 kevinlkx 2022-09-07
00603ad kevinlkx 2022-09-03
7d40768 kevinlkx 2022-09-03
combined_mast_res <- data.frame()
for(m in guides){
  mast_res <- mast_list[[m]]
  curr_gsfa_degs <- gsfa_degs[[m]]
  curr_mast_degs <- mast_degs[[m]]
  gsfa_only_degs <- setdiff(curr_gsfa_degs, curr_mast_degs)
  mast_only_degs <- setdiff(curr_mast_degs, curr_gsfa_degs)

  mast_res$guide <- m
  mast_res$gsfa_gene <- 0
  if(length(curr_gsfa_degs) >0){
    mast_res[curr_gsfa_degs, ]$gsfa_gene <- 1
  }
  mast_res$gsfa_only_gene <- 0
  if(length(gsfa_only_degs) >0){
    mast_res[gsfa_only_degs, ]$gsfa_only_gene <- 1
  }
  mast_res$mast_only_gene <- 0
  if(length(mast_only_degs) >0){
    mast_res[mast_only_degs, ]$mast_only_gene <- 1
  }
  combined_mast_res <- rbind(combined_mast_res, mast_res)
}

pvalue_list <- list('GSFA'=dplyr::filter(combined_mast_res,gsfa_gene==1)$PValue,
                    'GSFA only'=dplyr::filter(combined_mast_res,gsfa_only_gene==1)$PValue,
                    'MAST only'=dplyr::filter(combined_mast_res,mast_only_gene==1)$PValue,
                    'all genes'=combined_mast_res$PValue)

qqplot.pvalue(pvalue_list, pointSize = 1, legendSize = 4) + 
  ggtitle("") + theme(plot.title = element_text(hjust = 0.5)) +
  scale_colour_discrete(name="Method")

Version Author Date
c10b536 kevinlkx 2022-09-07
00603ad kevinlkx 2022-09-03
7d40768 kevinlkx 2022-09-03

QQ plots for GSFA p-values

combined_mast_res <- data.frame()
for(m in guides){
  mast_res <- mast_list[[m]]
  curr_gsfa_degs <- gsfa_degs[[m]]

  mast_res$gsfa_gene <- 0
  if(length(curr_gsfa_degs) >0){
    mast_res[curr_gsfa_degs, ]$gsfa_gene <- 1
  }
  
  combined_mast_res <- rbind(combined_mast_res, mast_res)
}

pvalue_list <- list('GSFA'=dplyr::filter(combined_mast_res,gsfa_gene==1)$PValue)

qqplot.pvalue(pvalue_list, pointSize = 1, legendSize = 4) + 
  ggtitle("") + theme(plot.title = element_text(hjust = 0.5)) +
  scale_color_manual(values=c("#00BA38")) +
  theme(legend.position="none")

Version Author Date
c10b536 kevinlkx 2022-09-07

QQ plots for GSFA only p-values

combined_mast_res <- data.frame()
for(m in guides){
  mast_res <- mast_list[[m]]
  curr_gsfa_degs <- gsfa_degs[[m]]
  curr_mast_degs <- mast_degs[[m]]
  gsfa_only_degs <- setdiff(curr_gsfa_degs, curr_mast_degs)

  mast_res$gsfa_only_gene <- 0
  if(length(gsfa_only_degs) >0){
    mast_res[gsfa_only_degs, ]$gsfa_only_gene <- 1
  }
  
  combined_mast_res <- rbind(combined_mast_res, mast_res)
}

pvalue_list <- list('GSFA only'=dplyr::filter(combined_mast_res,gsfa_only_gene==1)$PValue)

qqplot.pvalue(pvalue_list, pointSize = 1, legendSize = 4) + 
  ggtitle("") + theme(plot.title = element_text(hjust = 0.5)) +
  scale_color_manual(values=c("#00BA38")) +
  theme(legend.position="none")

Version Author Date
cc94b95 kevinlkx 2022-09-07
c10b536 kevinlkx 2022-09-07
d8a9602 kevinlkx 2022-09-05
00603ad kevinlkx 2022-09-03
7d40768 kevinlkx 2022-09-03

T cell data

Load the output of GSFA fit_gsfa_multivar() run.

data_folder <- "/project2/xinhe/yifan/Factor_analysis/Stimulated_T_Cells/"
fit <- readRDS(paste0(data_folder,
                      "gsfa_output_detect_01/all_uncorrected_by_group.use_negctrl/All.gibbs_obj_k20.svd_negctrl.restart.light.rds"))
gibbs_PM <- fit$posterior_means
lfsr_mat1 <- fit$lfsr1[, -ncol(fit$lfsr1)]
lfsr_mat0 <- fit$lfsr0[, -ncol(fit$lfsr0)]
total_effect1 <- fit$total_effect1[, -ncol(fit$total_effect1)]
total_effect0 <- fit$total_effect0[, -ncol(fit$total_effect0)]
KO_names <- colnames(lfsr_mat1)
guides <- KO_names[KO_names!="NonTarget"]

DEGs detected by GSFA

lfsr_mat <- lfsr_mat1[, guides]
gsfa_degs <- apply(lfsr_mat, 2, function(x){names(x)[x < 0.05]})
sapply(gsfa_degs, length)
  ARID1A     BTLA C10orf54     CBLB     CD3D      CD5   CDKN1B     DGKA 
     393      107       66      631        0      645      468       32 
    DGKZ   HAVCR2     LAG3     LCP2    MEF2D    PDCD1    RASA2    SOCS1 
     113       35        1      589       15        0      277      356 
   STAT6    TCEB2  TMEM222  TNFRSF9 
       1      300        4       14 

Load MAST single-gene DE result

mast_list <- list()
for (m in guides){
  fname <- paste0(data_folder, "processed_data/MAST/all_by_stim_negctrl/gRNA_", 
                  m, ".dev_res_top6k.vs_negctrl.rds")
  tmp_df <- readRDS(fname)
  tmp_df$geneID <- rownames(tmp_df)
  tmp_df <- tmp_df %>% dplyr::rename(FDR = fdr, PValue = pval)
  mast_list[[m]] <- tmp_df
}
mast_signif_counts <- sapply(mast_list, function(x){filter(x, FDR < 0.05) %>% nrow()})

DEGs detected by MAST

mast_degs <- lapply(mast_list, function(x){rownames(x)[x$FDR < 0.05]})
sapply(mast_degs, length)
  ARID1A     BTLA C10orf54     CBLB     CD3D      CD5   CDKN1B     DGKA 
       7        0        0       27        3        3        0        0 
    DGKZ   HAVCR2     LAG3     LCP2    MEF2D    PDCD1    RASA2    SOCS1 
       0        0        0        5        0        1        4        0 
   STAT6    TCEB2  TMEM222  TNFRSF9 
       1       54        0        0 

Compare DEGs from GSFA vs MAST

num_deg_guides.df <- data.frame()
for (m in guides){
  shared_degs <- intersect(mast_degs[[m]], gsfa_degs[[m]])
  mast_only_degs <- setdiff(mast_degs[[m]], gsfa_degs[[m]])
  gsfa_only_degs <- setdiff(gsfa_degs[[m]], mast_degs[[m]])
  num_deg_guides.df <- rbind(num_deg_guides.df, 
                             data.frame(guide = m, shared = length(shared_degs), mast_only = length(mast_only_degs), gsfa_only = length(gsfa_only_degs)))
}

all_mast_degs <- unique(unlist(mast_degs))
all_gsfa_degs <- unique(unlist(gsfa_degs))

length(all_gsfa_degs)
length(all_mast_degs)
length(setdiff(all_gsfa_degs, all_mast_degs))
length(setdiff(all_mast_degs, all_gsfa_degs))
length(intersect(all_gsfa_degs, all_mast_degs))

deg_list <- list("GSFA DEGs" = all_gsfa_degs,
                 "MAST DEGs" = all_mast_degs)

ggvenn(deg_list, fill_color = c("#00BA38","#619CFF"), show_percentage = FALSE, set_name_size = 6, text_size = 6)

Version Author Date
c10b536 kevinlkx 2022-09-07
7d40768 kevinlkx 2022-09-03
[1] 1522
[1] 96
[1] 1447
[1] 21
[1] 75

QQ plots comparing GSFA with MAST

combined_mast_res <- data.frame()
for(i in 1:length(guides)){
  guide <- guides[i]
  mast_res <- mast_list[[guide]]
  gsfa_de_genes <- gsfa_degs[[guide]]
  gsfa_de_genes <- intersect(gsfa_de_genes, rownames(mast_res))
  mast_res$gsfa_gene <- 0
  if(length(gsfa_de_genes) >0){
    mast_res[gsfa_de_genes, ]$gsfa_gene <- 1
  }
  combined_mast_res <- rbind(combined_mast_res, mast_res)
}

pvalue_list <- list('GSFA'=dplyr::filter(combined_mast_res,gsfa_gene==1)$PValue,
                    'all genes'=combined_mast_res$PValue)

qqplot.pvalue(pvalue_list, pointSize = 1, legendSize = 4) + 
      ggtitle("") + theme(plot.title = element_text(hjust = 0.5)) +
      scale_colour_discrete(name="Method") + 
      scale_color_manual(values=c("#00BA38","#619CFF"))

Version Author Date
c10b536 kevinlkx 2022-09-07
00603ad kevinlkx 2022-09-03
7d40768 kevinlkx 2022-09-03
combined_mast_res <- data.frame()
for(m in guides){
  mast_res <- mast_list[[m]]
  curr_gsfa_degs <- gsfa_degs[[m]]
  curr_mast_degs <- mast_degs[[m]]
  gsfa_only_degs <- setdiff(curr_gsfa_degs, curr_mast_degs)
  mast_only_degs <- setdiff(curr_mast_degs, curr_gsfa_degs)

  mast_res$guide <- m
  mast_res$gsfa_gene <- 0
  if(length(curr_gsfa_degs) >0){
    mast_res[curr_gsfa_degs, ]$gsfa_gene <- 1
  }
  mast_res$gsfa_only_gene <- 0
  if(length(gsfa_only_degs) >0){
    mast_res[gsfa_only_degs, ]$gsfa_only_gene <- 1
  }
  mast_res$mast_only_gene <- 0
  if(length(mast_only_degs) >0){
    mast_res[mast_only_degs, ]$mast_only_gene <- 1
  }
  combined_mast_res <- rbind(combined_mast_res, mast_res)
}

pvalue_list <- list('GSFA'=dplyr::filter(combined_mast_res,gsfa_gene==1)$PValue,
                    'GSFA only'=dplyr::filter(combined_mast_res,gsfa_only_gene==1)$PValue,
                    'MAST only'=dplyr::filter(combined_mast_res,mast_only_gene==1)$PValue,
                    'all genes'=combined_mast_res$PValue)

qqplot.pvalue(pvalue_list, pointSize = 1, legendSize = 4) + 
  ggtitle("") + theme(plot.title = element_text(hjust = 0.5)) +
  scale_colour_discrete(name="Method")

Version Author Date
c10b536 kevinlkx 2022-09-07
00603ad kevinlkx 2022-09-03
7d40768 kevinlkx 2022-09-03

QQ plots for GSFA p-values

combined_mast_res <- data.frame()
for(m in guides){
  mast_res <- mast_list[[m]]
  curr_gsfa_degs <- gsfa_degs[[m]]

  mast_res$gsfa_gene <- 0
  if(length(curr_gsfa_degs) >0){
    mast_res[curr_gsfa_degs, ]$gsfa_gene <- 1
  }
  
  combined_mast_res <- rbind(combined_mast_res, mast_res)
}

pvalue_list <- list('GSFA'=dplyr::filter(combined_mast_res,gsfa_gene==1)$PValue)

qqplot.pvalue(pvalue_list, pointSize = 1, legendSize = 4) + 
  ggtitle("") + theme(plot.title = element_text(hjust = 0.5)) +
  scale_color_manual(values=c("#00BA38")) +
  theme(legend.position="none")

Version Author Date
c10b536 kevinlkx 2022-09-07

QQ plots for GSFA only p-values

combined_mast_res <- data.frame()
for(m in guides){
  mast_res <- mast_list[[m]]
  curr_gsfa_degs <- gsfa_degs[[m]]
  curr_mast_degs <- mast_degs[[m]]
  gsfa_only_degs <- setdiff(curr_gsfa_degs, curr_mast_degs)

  mast_res$gsfa_only_gene <- 0
  if(length(gsfa_only_degs) >0){
    mast_res[gsfa_only_degs, ]$gsfa_only_gene <- 1
  }
  
  combined_mast_res <- rbind(combined_mast_res, mast_res)
}

pvalue_list <- list('GSFA only'=dplyr::filter(combined_mast_res,gsfa_only_gene==1)$PValue)

qqplot.pvalue(pvalue_list, pointSize = 1, legendSize = 4) + 
  ggtitle("") + theme(plot.title = element_text(hjust = 0.5)) +
  scale_color_manual(values=c("#00BA38")) +
  theme(legend.position="none")

Version Author Date
cc94b95 kevinlkx 2022-09-07
c10b536 kevinlkx 2022-09-07
d8a9602 kevinlkx 2022-09-05
00603ad kevinlkx 2022-09-03
7d40768 kevinlkx 2022-09-03

sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C         LC_TIME=C           
 [4] LC_COLLATE=C         LC_MONETARY=C        LC_MESSAGES=C       
 [7] LC_PAPER=C           LC_NAME=C            LC_ADDRESS=C        
[10] LC_TELEPHONE=C       LC_MEASUREMENT=C     LC_IDENTIFICATION=C 

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
[1] lattice_0.20-45   ggvenn_0.1.9      dplyr_1.0.9       reshape2_1.4.4   
[5] ggplot2_3.3.6     data.table_1.14.2 workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] tidyselect_1.1.2 xfun_0.30        bslib_0.3.1      purrr_0.3.4     
 [5] colorspace_2.0-3 vctrs_0.4.1      generics_0.1.2   htmltools_0.5.2 
 [9] yaml_2.3.5       utf8_1.2.2       rlang_1.0.2      jquerylib_0.1.4 
[13] later_1.3.0      pillar_1.7.0     withr_2.5.0      glue_1.6.2      
[17] DBI_1.1.3        plyr_1.8.7       lifecycle_1.0.1  stringr_1.4.0   
[21] munsell_0.5.0    gtable_0.3.0     evaluate_0.15    labeling_0.4.2  
[25] knitr_1.39       callr_3.7.0      fastmap_1.1.0    httpuv_1.6.5    
[29] ps_1.7.0         fansi_1.0.3      highr_0.9        Rcpp_1.0.8.3    
[33] promises_1.2.0.1 scales_1.2.0     jsonlite_1.8.0   farver_2.1.0    
[37] fs_1.5.2         digest_0.6.29    stringi_1.7.6    processx_3.5.3  
[41] getPass_0.2-2    rprojroot_2.0.3  cli_3.3.0        tools_4.2.0     
[45] magrittr_2.0.3   sass_0.4.1       tibble_3.1.7     crayon_1.5.1    
[49] whisker_0.4      pkgconfig_2.0.3  ellipsis_0.3.2   assertthat_0.2.1
[53] rmarkdown_2.14   httr_1.4.3       rstudioapi_0.13  R6_2.5.1        
[57] git2r_0.30.1     compiler_4.2.0