Last updated: 2022-09-02
Checks: 7 0
Knit directory: GSFA_analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20220524)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version fadd5df. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: Rplots.pdf
Untracked: analysis/check_Tcells_datasets.Rmd
Untracked: analysis/interpret_gsfa_LUHMES.Rmd
Untracked: analysis/interpret_gsfa_TCells.Rmd
Untracked: analysis/spca_LUHMES_data.Rmd
Untracked: analysis/test_seurat.Rmd
Untracked: code/gsfa_negctrl_job.sbatch
Untracked: code/music_LUHMES_Yifan.R
Untracked: code/plotting_functions.R
Untracked: code/run_gsfa_2groups_negctrl.R
Untracked: code/run_gsfa_negctrl.R
Untracked: code/run_music_LUHMES.R
Untracked: code/run_music_LUHMES_data.sbatch
Untracked: code/run_sceptre_Tcells_stimulated_data.sbatch
Untracked: code/run_sceptre_Tcells_unstimulated_data.sbatch
Untracked: code/run_spca_LUHMES.R
Untracked: code/run_spca_TCells.R
Untracked: code/run_unguided_gsfa_LUHMES.R
Untracked: code/run_unguided_gsfa_LUHMES.sbatch
Untracked: code/run_unguided_gsfa_Tcells.R
Untracked: code/run_unguided_gsfa_Tcells.sbatch
Untracked: code/sceptre_LUHMES_data.R
Untracked: code/sceptre_Tcells_stimulated_data.R
Untracked: code/sceptre_Tcells_unstimulated_data.R
Untracked: code/seurat_sim_fpr_tpr.R
Untracked: code/unguided_GFSA_mixture_normal_prior.cpp
Unstaged changes:
Modified: analysis/sceptre_LUHMES_data.Rmd
Modified: analysis/twostep_clustering_LUHMES_data.Rmd
Modified: code/run_sceptre_LUHMES_data.R
Modified: code/run_sceptre_LUHMES_data.sbatch
Modified: code/run_sceptre_cropseq_data.sbatch
Modified: code/sceptre_analysis.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/check_gsfa_targets_degs.Rmd
) and HTML (docs/check_gsfa_targets_degs.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | fadd5df | kevinlkx | 2022-09-02 | added tables of DE guides |
html | ffc019e | kevinlkx | 2022-09-01 | Build site. |
Rmd | 551050c | kevinlkx | 2022-09-01 | checked DEG results for targets |
html | b0c5501 | kevinlkx | 2022-09-01 | Build site. |
Rmd | 2679534 | kevinlkx | 2022-09-01 | checked DEG results for targets |
html | 0128904 | kevinlkx | 2022-09-01 | Build site. |
Rmd | de68580 | kevinlkx | 2022-09-01 | checked DEG results for targets |
library(Seurat)
library(data.table)
library(Matrix)
library(tidyverse)
library(ggplot2)
library(gridExtra)
library(ComplexHeatmap)
library(kableExtra)
library(WebGestaltR)
library(GSFA)
library(DT)
source("code/plotting_functions.R")
Load GSFA result
data_folder <- "/project2/xinhe/yifan/Factor_analysis/LUHMES/"
fit <- readRDS(paste0(data_folder,
"gsfa_output_detect_01/use_negctrl/All.gibbs_obj_k20.svd_negctrl.seed_14314.light.rds"))
gibbs_PM <- fit$posterior_means
lfsr_mat <- fit$lfsr[, -ncol(fit$lfsr)]
total_effect <- fit$total_effect[, -ncol(fit$total_effect)]
KO_names <- colnames(lfsr_mat)
guides <- KO_names[KO_names!="Nontargeting"]
Load the mapping from gene name to ENSEMBL ID for all 6k genes used in GSFA
feature.names <- data.frame(fread(paste0(data_folder, "GSE142078_raw/GSM4219576_Run2_genes.tsv.gz"),
header = FALSE), stringsAsFactors = FALSE)
genes_df <- feature.names[match(rownames(lfsr_mat), feature.names$V1), ]
names(genes_df) <- c("ID", "Name")
Check the gene loadings to see if the targeted genes in any of the factors P(F) > 0.95?
F_pm <- gibbs_PM$F_pm
guide_genes_df <- feature.names[match(guides, feature.names$V2), ]
names(guide_genes_df) <- c("ID", "Name")
F_pm_guides <- F_pm[match(guide_genes_df$ID, rownames(F_pm)), ]
rownames(F_pm_guides) <- guides
F_pm_guides_highpip <- ifelse(F_pm_guides > 0.95, 1, 0)
F_pm_guides_highpip[is.na(F_pm_guides_highpip)] <- 0
gsfa_num_highpip_factors <- rowSums(F_pm_guides_highpip)
GSFA result
effect_mat <- total_effect
rownames(effect_mat) <- rownames(lfsr_mat)
colnames(effect_mat) <- colnames(lfsr_mat)
gsfa_deg_guides.df <- data.frame()
for(guide in guides){
guide_geneID <- feature.names[which(feature.names$V2 == guide),]$V1
if(guide_geneID %in% rownames(lfsr_mat)){
gsfa_deg_guides.df <- rbind(gsfa_deg_guides.df,
data.frame(guide = guide, lfsr = lfsr_mat[guide_geneID, guide], effect = effect_mat[guide_geneID, guide]))
}else{
gsfa_deg_guides.df <- rbind(gsfa_deg_guides.df,
data.frame(guide = guide, lfsr = NA, effect = NA))
}
}
gsfa_deg_guides.df$sig_DE <- ifelse(gsfa_deg_guides.df$lfsr < 0.05, "DE", "")
gsfa_de_guides <- gsfa_deg_guides.df$guide[which(gsfa_deg_guides.df$lfsr < 0.05)]
MAST result
mast_deg_guides.df <- data.frame()
for (guide in guides){
fname <- paste0(data_folder, "processed_data/MAST/dev_top6k_negctrl/gRNA_",
guide, ".dev_res_top6k.vs_negctrl.rds")
mast_df <- readRDS(fname)
mast_df$geneID <- rownames(mast_df)
mast_df <- mast_df %>% dplyr::rename(FDR = fdr, PValue = pval)
guide_geneID <- feature.names[which(feature.names$V2 == guide),]$V1
if(guide_geneID %in% rownames(mast_df)){
mast_deg_guides.df <- rbind(mast_deg_guides.df,
data.frame(guide = guide, fdr = mast_df[guide_geneID, "FDR"], logFC = mast_df[guide_geneID, "logFC"]))
}else{
mast_deg_guides.df <- rbind(mast_deg_guides.df,
data.frame(guide = guide, fdr = NA, logFC = NA))
}
}
mast_deg_guides.df$sig_DE <- ifelse(mast_deg_guides.df$fdr < 0.05, "DE", "")
mast_de_guides <- mast_deg_guides.df$guide[which(mast_deg_guides.df$fdr < 0.05)]
DESeq2
deseq_deg_guides.df <- data.frame()
for (guide in guides){
fname <- paste0(data_folder, "processed_data/DESeq2/dev_top6k_negctrl/gRNA_",
guide, ".dev_res_top6k.vs_negctrl.rds")
res <- readRDS(fname)
res <- as.data.frame(res@listData, row.names = res@rownames)
res$geneID <- rownames(res)
deseq_df <- res %>% dplyr::rename(FDR = padj, PValue = pvalue)
guide_geneID <- feature.names[which(feature.names$V2 == guide),]$V1
if(guide_geneID %in% rownames(deseq_df)){
deseq_deg_guides.df <- rbind(deseq_deg_guides.df,
data.frame(guide = guide,
fdr = deseq_df[guide_geneID, "FDR"], logFC = deseq_df[guide_geneID, "log2FoldChange"]))
}else{
deseq_deg_guides.df <- rbind(deseq_deg_guides.df,
data.frame(guide = guide, fdr = NA, logFC = NA))
}
}
deseq_deg_guides.df$sig_DE <- ifelse(deseq_deg_guides.df$fdr < 0.05, "DE", "")
deseq_de_guides <- deseq_deg_guides.df$guide[which(deseq_deg_guides.df$fdr < 0.05)]
scMAGeCK
scmageck_res <- readRDS(paste0(data_folder, "scmageck/scmageck_lr.LUHMES.dev_res_top_6k.rds"))
colnames(scmageck_res$fdr)[colnames(scmageck_res$fdr) == "NegCtrl"] <- "Nontargeting"
colnames(scmageck_res$score)[colnames(scmageck_res$score) == "NegCtrl"] <- "Nontargeting"
scmageck_deg_guides.df <- data.frame()
for (guide in guides){
guide_geneID <- feature.names[which(feature.names$V2 == guide),]$V1
if(guide_geneID %in% rownames(scmageck_res$fdr)){
scmageck_deg_guides.df <- rbind(scmageck_deg_guides.df,
data.frame(guide = guide, fdr = scmageck_res$fdr[guide_geneID, guide], score = scmageck_res$score[guide_geneID, guide]))
}else{
scmageck_deg_guides.df <- rbind(scmageck_deg_guides.df,
data.frame(guide = guide, fdr = NA, score = NA))
}
}
scmageck_deg_guides.df$sig_DE <- ifelse(scmageck_deg_guides.df$fdr < 0.05, "DE", "")
scmageck_de_guides <- scmageck_deg_guides.df$guide[which(scmageck_deg_guides.df$fdr < 0.05)]
SCEPTRE
sceptre_res <- readRDS("/project2/xinhe/kevinluo/GSFA/sceptre_analysis/LUHMES_cropseq_data/sceptre_output/sceptre.result.rds")
sceptre_count_df <- data.frame(matrix(nrow = length(guides), ncol = 2))
colnames(sceptre_count_df) <- c("target", "num_DEG")
sceptre_deg_guides.df <- data.frame()
for (guide in guides){
curr_sceptre_res <- sceptre_res %>% filter(gRNA_id == guide)
curr_sceptre_res$fdr <- p.adjust(curr_sceptre_res$p_value, method = "fdr")
guide_geneID <- feature.names[which(feature.names$V2 == guide),]$V1
if(guide_geneID %in% curr_sceptre_res$gene_id){
sceptre_deg_guides.df <- rbind(sceptre_deg_guides.df,
data.frame(guide = guide,
fdr = curr_sceptre_res$fdr[curr_sceptre_res$gene_id == guide_geneID],
z_value = curr_sceptre_res$z_value[curr_sceptre_res$gene_id == guide_geneID]))
}else{
sceptre_deg_guides.df <- rbind(sceptre_deg_guides.df,
data.frame(guide = guide, fdr = NA, z_value = NA))
}
}
sceptre_deg_guides.df$sig_DE <- ifelse(sceptre_deg_guides.df$fdr < 0.05, "DE", "")
sceptre_de_guides <- sceptre_deg_guides.df$guide[which(sceptre_deg_guides.df$fdr < 0.05)]
Compare across methods
dge_guides_comparison_df <- data.frame(Perturbation = guides,
num_GSFA_factors = gsfa_num_highpip_factors,
GSFA = gsfa_deg_guides.df$sig_DE,
scMAGeCK = scmageck_deg_guides.df$sig_DE,
DESeq2 = deseq_deg_guides.df$sig_DE,
MAST = mast_deg_guides.df$sig_DE,
SCEPTRE = sceptre_deg_guides.df$sig_DE)
DT::datatable(dge_guides_comparison_df,
rownames = FALSE,
options = list(pageLength = length(guides),
columnDefs = list(list(className = 'dt-center', targets = 0:4))))
LUHMES_de_guides <- data.frame(method = c("GSFA", "scMAGeCK", "DESeq2", "MAST", "SCEPTRE"),
DEGs = c(paste(gsfa_de_guides, collapse = ","),
paste(scmageck_de_guides, collapse = ","),
paste(deseq_de_guides, collapse = ","),
paste(mast_de_guides, collapse = ","),
paste(sceptre_de_guides, collapse = ",")))
Load GSFA result
data_folder <- "/project2/xinhe/yifan/Factor_analysis/Stimulated_T_Cells/"
fit <- readRDS(paste0(data_folder,
"gsfa_output_detect_01/all_uncorrected_by_group.use_negctrl/All.gibbs_obj_k20.svd_negctrl.restart.light.rds"))
gibbs_PM <- fit$posterior_means
lfsr_mat1 <- fit$lfsr1[, -ncol(fit$lfsr1)]
lfsr_mat0 <- fit$lfsr0[, -ncol(fit$lfsr0)]
total_effect1 <- fit$total_effect1[, -ncol(fit$total_effect1)]
total_effect0 <- fit$total_effect0[, -ncol(fit$total_effect0)]
KO_names <- colnames(lfsr_mat1)
guides <- KO_names[KO_names!="NonTarget"]
Load the mapping from gene name to ENSEMBL ID for all 6k genes used in GSFA.
feature.names <- data.frame(fread(paste0(data_folder, "GSE119450_RAW/D1N/genes.tsv"),
header = FALSE), stringsAsFactors = FALSE)
genes_df <- feature.names[match(rownames(lfsr_mat1), feature.names$V1), ]
names(genes_df) <- c("ID", "Name")
Check the gene loadings to see if the targeted genes in any of the factors P(F) > 0.95?
F_pm <- gibbs_PM$F_pm
guide_genes_df <- feature.names[match(guides, feature.names$V2), ]
names(guide_genes_df) <- c("ID", "Name")
F_pm_guides <- F_pm[match(guide_genes_df$ID, rownames(F_pm)), ]
rownames(F_pm_guides) <- guides
F_pm_guides_highpip <- ifelse(F_pm_guides > 0.95, 1, 0)
F_pm_guides_highpip[is.na(F_pm_guides_highpip)] <- 0
gsfa_num_highpip_factors <- rowSums(F_pm_guides_highpip)
GSFA result
lfsr_mat <- lfsr_mat1
effect_mat <- total_effect1
rownames(effect_mat) <- rownames(lfsr_mat)
colnames(effect_mat) <- colnames(lfsr_mat)
gsfa_deg_guides.df <- data.frame()
for(guide in guides){
guide_geneID <- feature.names[which(feature.names$V2 == guide),]$V1
if(guide_geneID %in% rownames(lfsr_mat)){
gsfa_deg_guides.df <- rbind(gsfa_deg_guides.df,
data.frame(guide = guide, lfsr = lfsr_mat[guide_geneID, guide], effect = effect_mat[guide_geneID, guide]))
}else{
gsfa_deg_guides.df <- rbind(gsfa_deg_guides.df,
data.frame(guide = guide, lfsr = NA, effect = NA))
}
}
gsfa_deg_guides.df$sig_DE <- ifelse(gsfa_deg_guides.df$lfsr < 0.05, "DE", "")
gsfa_de_guides <- gsfa_deg_guides.df$guide[which(gsfa_deg_guides.df$lfsr < 0.05)]
MAST
mast_deg_guides.df <- data.frame()
for (guide in guides){
fname <- paste0(data_folder, "processed_data/MAST/all_by_stim_negctrl/gRNA_",
guide, ".dev_res_top6k.vs_negctrl.rds")
mast_df <- readRDS(fname)
mast_df$geneID <- rownames(mast_df)
mast_df <- mast_df %>% dplyr::rename(FDR = fdr, PValue = pval)
guide_geneID <- feature.names[which(feature.names$V2 == guide),]$V1
if(guide_geneID %in% rownames(mast_df)){
mast_deg_guides.df <- rbind(mast_deg_guides.df,
data.frame(guide = guide, fdr = mast_df[guide_geneID, "FDR"], logFC = mast_df[guide_geneID, "logFC"]))
}else{
mast_deg_guides.df <- rbind(mast_deg_guides.df,
data.frame(guide = guide, fdr = NA, logFC = NA))
}
}
mast_deg_guides.df$sig_DE <- ifelse(mast_deg_guides.df$fdr < 0.05, "DE", "")
mast_de_guides <- mast_deg_guides.df$guide[which(mast_deg_guides.df$fdr < 0.05)]
DESeq2
deseq_deg_guides.df <- data.frame()
for (guide in guides){
fname <- paste0(data_folder, "processed_data/DESeq2/all_by_stim_negctrl/gRNA_",
guide, ".dev_res_top6k.vs_negctrl.rds")
res <- readRDS(fname)
res <- as.data.frame(res@listData, row.names = res@rownames)
res$geneID <- rownames(res)
deseq_df <- res %>% dplyr::rename(FDR = padj, PValue = pvalue)
guide_geneID <- feature.names[which(feature.names$V2 == guide),]$V1
if(guide_geneID %in% rownames(deseq_df)){
deseq_deg_guides.df <- rbind(deseq_deg_guides.df,
data.frame(guide = guide, fdr = deseq_df[guide_geneID, "FDR"], logFC = deseq_df[guide_geneID, "log2FoldChange"]))
}else{
deseq_deg_guides.df <- rbind(deseq_deg_guides.df,
data.frame(guide = guide, fdr = NA, logFC = NA))
}
}
deseq_deg_guides.df$sig_DE <- ifelse(deseq_deg_guides.df$fdr < 0.05, "DE", "")
deseq_de_guides <- deseq_deg_guides.df$guide[which(deseq_deg_guides.df$fdr < 0.05)]
scMAGeCK
scmageck_res <- readRDS(paste0(data_folder, "scmageck/scmageck_lr.TCells_stim.dev_res_top_6k.rds"))
colnames(scmageck_res$fdr)[colnames(scmageck_res$fdr) == "NegCtrl"] <- "NonTarget"
colnames(scmageck_res$score)[colnames(scmageck_res$score) == "NegCtrl"] <- "NonTarget"
scmageck_deg_guides.df <- data.frame()
for (guide in guides){
guide_geneID <- feature.names[which(feature.names$V2 == guide),]$V1
if(guide_geneID %in% rownames(scmageck_res$fdr)){
scmageck_deg_guides.df <- rbind(scmageck_deg_guides.df,
data.frame(guide = guide, fdr = scmageck_res$fdr[guide_geneID, guide], score = scmageck_res$score[guide_geneID, guide]))
}else{
scmageck_deg_guides.df <- rbind(scmageck_deg_guides.df,
data.frame(guide = guide, fdr = NA, score = NA))
}
}
scmageck_deg_guides.df$sig_DE <- ifelse(scmageck_deg_guides.df$fdr < 0.05, "DE", "")
scmageck_de_guides <- scmageck_deg_guides.df$guide[which(scmageck_deg_guides.df$fdr < 0.05)]
SCEPTRE
sceptre_res <- readRDS("/project2/xinhe/kevinluo/GSFA/sceptre_analysis/TCells_cropseq_data/simulated_data/sceptre_output/sceptre.result.rds")
sceptre_count_df <- data.frame(matrix(nrow = length(guides), ncol = 2))
colnames(sceptre_count_df) <- c("target", "num_DEG")
sceptre_deg_guides.df <- data.frame()
for (guide in guides){
curr_sceptre_res <- sceptre_res %>% filter(gRNA_id == guide)
curr_sceptre_res$fdr <- p.adjust(curr_sceptre_res$p_value, method = "fdr")
guide_geneID <- feature.names[which(feature.names$V2 == guide),]$V1
if(guide_geneID %in% curr_sceptre_res$gene_id){
sceptre_deg_guides.df <- rbind(sceptre_deg_guides.df,
data.frame(guide = guide, fdr = curr_sceptre_res$fdr[curr_sceptre_res$gene_id == guide_geneID],
z_value = curr_sceptre_res$z_value[curr_sceptre_res$gene_id == guide_geneID]))
}else{
sceptre_deg_guides.df <- rbind(sceptre_deg_guides.df,
data.frame(guide = guide, fdr = NA, z_value = NA))
}
}
sceptre_deg_guides.df$sig_DE <- ifelse(sceptre_deg_guides.df$fdr < 0.05, "DE", "")
sceptre_de_guides <- sceptre_deg_guides.df$guide[which(sceptre_deg_guides.df$fdr < 0.05)]
Compare across methods
dge_guides_comparison_df <- data.frame(Perturbation = guides,
num_GSFA_factors = gsfa_num_highpip_factors,
GSFA = gsfa_deg_guides.df$sig_DE,
scMAGeCK = scmageck_deg_guides.df$sig_DE,
DESeq2 = deseq_deg_guides.df$sig_DE,
MAST = mast_deg_guides.df$sig_DE,
SCEPTRE = sceptre_deg_guides.df$sig_DE)
DT::datatable(dge_guides_comparison_df,
rownames = FALSE,
options = list(pageLength = length(guides),
columnDefs = list(list(className = 'dt-center', targets = 0:4))))
Tcells_de_guides <- data.frame(method = c("GSFA", "scMAGeCK", "DESeq2", "MAST", "SCEPTRE"),
DEGs = c(paste(gsfa_de_guides, collapse = ","),
paste(scmageck_de_guides, collapse = ","),
paste(deseq_de_guides, collapse = ","),
paste(mast_de_guides, collapse = ","),
paste(sceptre_de_guides, collapse = ",")))
de_guides_table <- data.frame(Method = LUHMES_de_guides$method,
LUHMES_DEGs = LUHMES_de_guides$DEGs,
Tcells_DEGs = Tcells_de_guides$DEGs)
DT::datatable(de_guides_table,
rownames = FALSE,
options = list(pageLength = nrow(LUHMES_de_guides),
columnDefs = list(list(className = 'dt-center', targets = 0:4))))
sessionInfo()
R version 4.0.4 (2021-02-15)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] grid stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] lattice_0.20-45 DT_0.21 GSFA_0.2.8
[4] WebGestaltR_0.4.4 kableExtra_1.3.4 ComplexHeatmap_2.6.2
[7] gridExtra_2.3 forcats_0.5.1 stringr_1.4.0
[10] dplyr_1.0.8 purrr_0.3.4 readr_2.1.2
[13] tidyr_1.2.0 tibble_3.1.6 ggplot2_3.3.5
[16] tidyverse_1.3.1 Matrix_1.4-1 data.table_1.14.2
[19] SeuratObject_4.0.4 Seurat_4.1.0 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] utf8_1.2.2 reticulate_1.25 R.utils_2.12.0
[4] tidyselect_1.1.2 htmlwidgets_1.5.4 Rtsne_0.15
[7] munsell_0.5.0 codetools_0.2-18 ica_1.0-2
[10] future_1.24.0 miniUI_0.1.1.1 withr_2.5.0
[13] spatstat.random_2.1-0 colorspace_2.0-3 knitr_1.38
[16] rstudioapi_0.13 stats4_4.0.4 ROCR_1.0-11
[19] tensor_1.5 listenv_0.8.0 git2r_0.30.1
[22] polyclip_1.10-0 rprojroot_2.0.2 parallelly_1.32.1
[25] vctrs_0.4.1 generics_0.1.3 xfun_0.30
[28] R6_2.5.1 doParallel_1.0.17 clue_0.3-60
[31] spatstat.utils_2.3-0 assertthat_0.2.1 promises_1.2.0.1
[34] scales_1.2.0 gtable_0.3.0 Cairo_1.6-0
[37] globals_0.16.0 processx_3.5.3 goftest_1.2-3
[40] rlang_1.0.4 systemfonts_1.0.4 GlobalOptions_0.1.2
[43] splines_4.0.4 lazyeval_0.2.2 spatstat.geom_2.3-2
[46] broom_0.8.0 yaml_2.3.5 reshape2_1.4.4
[49] abind_1.4-5 modelr_0.1.8 crosstalk_1.2.0
[52] backports_1.4.1 httpuv_1.6.5 tools_4.0.4
[55] ellipsis_0.3.2 spatstat.core_2.4-0 jquerylib_0.1.4
[58] RColorBrewer_1.1-3 BiocGenerics_0.36.1 ggridges_0.5.3
[61] Rcpp_1.0.9 plyr_1.8.6 ps_1.7.1
[64] rpart_4.1-15 deldir_1.0-6 pbapply_1.5-0
[67] GetoptLong_1.0.5 cowplot_1.1.1 S4Vectors_0.28.1
[70] zoo_1.8-9 haven_2.5.0 ggrepel_0.9.1
[73] cluster_2.1.3 fs_1.5.2 apcluster_1.4.10
[76] magrittr_2.0.3 scattermore_0.7 circlize_0.4.15
[79] lmtest_0.9-40 reprex_2.0.1 RANN_2.6.1
[82] whisker_0.4 fitdistrplus_1.1-8 matrixStats_0.62.0
[85] hms_1.1.1 patchwork_1.1.1 mime_0.12
[88] evaluate_0.16 xtable_1.8-4 readxl_1.4.0
[91] IRanges_2.24.1 shape_1.4.6 compiler_4.0.4
[94] KernSmooth_2.23-20 crayon_1.5.1 R.oo_1.24.0
[97] htmltools_0.5.3 mgcv_1.8-39 later_1.3.0
[100] tzdb_0.3.0 lubridate_1.8.0 DBI_1.1.3
[103] dbplyr_2.1.1 MASS_7.3-58.1 cli_3.3.0
[106] R.methodsS3_1.8.1 parallel_4.0.4 igraph_1.3.4
[109] pkgconfig_2.0.3 getPass_0.2-2 plotly_4.10.0
[112] spatstat.sparse_2.1-0 xml2_1.3.3 foreach_1.5.2
[115] svglite_2.0.0 bslib_0.3.1 rngtools_1.5.2
[118] webshot_0.5.2 rvest_1.0.2 doRNG_1.8.2
[121] callr_3.7.0 digest_0.6.29 sctransform_0.3.3
[124] RcppAnnoy_0.0.19 spatstat.data_2.1-2 rmarkdown_2.13
[127] cellranger_1.1.0 leiden_0.3.9 uwot_0.1.11
[130] shiny_1.7.1 rjson_0.2.21 lifecycle_1.0.1
[133] nlme_3.1-159 jsonlite_1.8.0 viridisLite_0.4.0
[136] fansi_1.0.3 pillar_1.8.0 fastmap_1.1.0
[139] httr_1.4.2 survival_3.3-1 glue_1.6.2
[142] png_0.1-7 iterators_1.0.14 stringi_1.7.6
[145] sass_0.4.1 irlba_2.3.5 future.apply_1.8.1