Last updated: 2022-09-01

Checks: 7 0

Knit directory: GSFA_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220524) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version f255236. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  Rplots.pdf
    Untracked:  analysis/check_Tcells_datasets.Rmd
    Untracked:  analysis/interpret_gsfa_LUHMES.Rmd
    Untracked:  analysis/interpret_gsfa_TCells.Rmd
    Untracked:  analysis/spca_LUHMES_data.Rmd
    Untracked:  analysis/test_seurat.Rmd
    Untracked:  code/gsfa_negctrl_job.sbatch
    Untracked:  code/music_LUHMES_Yifan.R
    Untracked:  code/plotting_functions.R
    Untracked:  code/run_gsfa_2groups_negctrl.R
    Untracked:  code/run_gsfa_negctrl.R
    Untracked:  code/run_music_LUHMES.R
    Untracked:  code/run_music_LUHMES_data.sbatch
    Untracked:  code/run_sceptre_LUHMES_data.sbatch
    Untracked:  code/run_sceptre_Tcells_stimulated_data.sbatch
    Untracked:  code/run_sceptre_Tcells_unstimulated_data.sbatch
    Untracked:  code/run_spca_LUHMES.R
    Untracked:  code/run_spca_TCells.R
    Untracked:  code/run_unguided_gsfa_LUHMES.R
    Untracked:  code/run_unguided_gsfa_LUHMES.sbatch
    Untracked:  code/run_unguided_gsfa_Tcells.R
    Untracked:  code/run_unguided_gsfa_Tcells.sbatch
    Untracked:  code/sceptre_LUHMES_data.R
    Untracked:  code/sceptre_Tcells_stimulated_data.R
    Untracked:  code/sceptre_Tcells_unstimulated_data.R
    Untracked:  code/seurat_sim_fpr_tpr.R
    Untracked:  code/unguided_GFSA_mixture_normal_prior.cpp

Unstaged changes:
    Modified:   analysis/sceptre_LUHMES_data.Rmd
    Modified:   analysis/twostep_clustering_LUHMES_data.Rmd
    Modified:   code/run_sceptre_cropseq_data.sbatch
    Modified:   code/sceptre_analysis.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/check_gsfa_deg_exp.Rmd) and HTML (docs/check_gsfa_deg_exp.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd f255236 kevinlkx 2022-09-01 added total number of DEGs
html b60cbfd kevinlkx 2022-09-01 Build site.
Rmd 2aae326 kevinlkx 2022-09-01 updated figure legend
html cf9232c kevinlkx 2022-08-31 Build site.
Rmd b709053 kevinlkx 2022-08-31 checked the distribution of DEGs by expression bins

Load necessary packages and data

library(Seurat)
library(data.table)
library(Matrix)
library(tidyverse)
library(ggplot2)
theme_set(theme_bw() + theme(plot.title = element_text(size = 14, hjust = 0.5),
                             axis.title = element_text(size = 14),
                             axis.text = element_text(size = 12),
                             legend.title = element_text(size = 13),
                             legend.text = element_text(size = 12),
                             panel.grid.minor = element_blank())
)
library(gridExtra)
library(ComplexHeatmap)
library(kableExtra)
library(WebGestaltR)
library(GSFA)
source("/project2/xinhe/yifan/Factor_analysis/analysis_website_for_Kevin/scripts/plotting_functions.R")

Set directories

res_dir <- "/project2/xinhe/kevinluo/GSFA/DEGs_by_expression_level"
dir.create(res_dir, recursive = TRUE, showWarnings = FALSE)

LUHMES data

Load raw gene expression data

combined_obj <- readRDS("/project2/xinhe/yifan/Factor_analysis/shared_data/LUHMES_cropseq_data_seurat.rds")
dim(combined_obj)
[1] 33694  8708

Normalizing the data by log2 CPM

combined_obj <- NormalizeData(combined_obj, scale.factor = 1e6)
log2cpm_exp_mat <- GetAssayData(combined_obj) / log(2)

dim(log2cpm_exp_mat)
[1] 33694  8708

Select the 6k genes used for GSFA in this analysis

# Normalized and scaled data used for GSFA, the rownames of which are the 6k genes used for GSFA
scaled_gene_matrix_in_gsfa <- combined_obj@assays$RNA@scale.data
selected_gene_ids <- rownames(scaled_gene_matrix_in_gsfa)
log2cpm_exp_mat <- log2cpm_exp_mat[selected_gene_ids, ]
dim(log2cpm_exp_mat)
[1] 6000 8708

Load GSFA result

data_folder <- "/project2/xinhe/yifan/Factor_analysis/LUHMES/"
fit <- readRDS(paste0(data_folder,
                      "gsfa_output_detect_01/use_negctrl/All.gibbs_obj_k20.svd_negctrl.seed_14314.light.rds"))
gibbs_PM <- fit$posterior_means
lfsr_mat <- fit$lfsr[, -ncol(fit$lfsr)]
total_effect <- fit$total_effect[, -ncol(fit$total_effect)]
KO_names <- colnames(lfsr_mat)
guides <- KO_names[KO_names!="Nontargeting"]
if(!all.equal(rownames(lfsr_mat), rownames(log2cpm_exp_mat))){stop("Gene names not match!")}

mean_gene_exp <- rowMeans(log2cpm_exp_mat)
exp_breaks <- quantile(mean_gene_exp, probs = seq(0,1,0.2))
gene_exp_bins <- cut(mean_gene_exp, breaks = exp_breaks, labels = 1:5)
gene_exp_bins[is.na(gene_exp_bins)] <- 1
gene_exp_bins.df <- data.frame(geneID = rownames(log2cpm_exp_mat), mean_exp = mean_gene_exp, exp_bin = gene_exp_bins)
table(gene_exp_bins.df$exp_bin)

lfsr_signif_num_bins <- data.frame()
for(l in 1:5){
  curr_genes <- gene_exp_bins.df[gene_exp_bins.df$exp_bin == l, ]$geneID
  cat(length(curr_genes), "genes in bin", l, "\n")
  curr_lfsr_mat <- lfsr_mat[curr_genes, ]
  curr_lfsr_signif_num <- colSums(curr_lfsr_mat < 0.05)
  lfsr_signif_num_bins <- rbind(lfsr_signif_num_bins, 
                                c(bin = l, curr_lfsr_signif_num))
}
colnames(lfsr_signif_num_bins) <- c("bin", colnames(lfsr_mat))

cat("Total number of DEGs: \n")
colSums(lfsr_signif_num_bins[,guides])

lfsr_signif_num_bins.df <- tidyr::gather(lfsr_signif_num_bins[,c("bin", guides)], guide, num_genes, all_of(guides), factor_key=TRUE)
lfsr_signif_num_bins.df$bin <- factor(lfsr_signif_num_bins.df$bin, levels = 1:5, 
                                      labels = c("[0-20%]", "[20-40%]", "[40-60%]", "[60-80%]", "[80-100%]"))
# pdf(file.path(res_dir, "LUHMES_stimulated_lfsr_signif_num_by_exp_bins.pdf"), width = 14, height = 3)
ggplot(lfsr_signif_num_bins.df, aes(x=guide, y=num_genes, fill=bin)) + 
  geom_bar(position="stack", stat="identity") +
  scale_fill_brewer(palette = "Blues") + 
  guides(fill=guide_legend(title="Gene expression (log2 CPM) percentile")) +
  labs(x = "Target genes",
       y = "Number of DEGs",
       title = "Number of DEGs detected by gene expression level") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 12),
        legend.position = "right",
        legend.text = element_text(size = 13))

Version Author Date
b60cbfd kevinlkx 2022-09-01
cf9232c kevinlkx 2022-08-31
# dev.off()

   1    2    3    4    5 
1200 1200 1200 1200 1200 
1200 genes in bin 1 
1200 genes in bin 2 
1200 genes in bin 3 
1200 genes in bin 4 
1200 genes in bin 5 
Total number of DEGs: 
  ADNP ARID1B  ASH1L   CHD2   CHD8 CTNND2 DYRK1A  HDAC5  MECP2  MYT1L   POGZ 
   795    310    322    756      0      0     23      0      0      0      0 
  PTEN   RELN  SETD5 
   895      0    466 

T cells data

Load input data

combined_obj <- readRDS('/project2/xinhe/yifan/Factor_analysis/shared_data/TCells_cropseq_data_seurat.rds')

Extract data for stimulated cells

metadata <- combined_obj@meta.data
table(metadata$orig.ident)

combined_obj@meta.data$condition <- "unstimulated"
combined_obj@meta.data$condition[which(endsWith(combined_obj@meta.data$orig.ident, "S"))] <- "stimulated"

combined_obj <- subset(combined_obj, subset = condition == "stimulated")
combined_obj
table(combined_obj@meta.data$orig.ident)

dim(combined_obj)

TCells_D1N TCells_D1S TCells_D2N TCells_D2S 
      5533       6843       5144       7435 
An object of class Seurat 
33694 features across 14278 samples within 1 assay 
Active assay: RNA (33694 features, 1000 variable features)
 2 dimensional reductions calculated: pca, umap

TCells_D1S TCells_D2S 
      6843       7435 
[1] 33694 14278

Normalizing the data

combined_obj <- NormalizeData(combined_obj, scale.factor = 1e6)
log2cpm_exp_mat <- GetAssayData(combined_obj) / log(2)

Select the 6k genes used for GSFA in this analysis

# Normalized and scaled data used for GSFA, the rownames of which are the 6k genes used for GSFA
scaled_gene_matrix_in_gsfa <- combined_obj@assays$RNA@scale.data
selected_gene_ids <- rownames(scaled_gene_matrix_in_gsfa)
log2cpm_exp_mat <- log2cpm_exp_mat[selected_gene_ids, ]
dim(log2cpm_exp_mat)
[1]  6000 14278

Load GSFA result

data_folder <- "/project2/xinhe/yifan/Factor_analysis/Stimulated_T_Cells/"
fit <- readRDS(paste0(data_folder,
                      "gsfa_output_detect_01/all_uncorrected_by_group.use_negctrl/All.gibbs_obj_k20.svd_negctrl.restart.light.rds"))
gibbs_PM <- fit$posterior_means
lfsr_mat1 <- fit$lfsr1[, -ncol(fit$lfsr1)]
lfsr_mat0 <- fit$lfsr0[, -ncol(fit$lfsr0)]
total_effect1 <- fit$total_effect1[, -ncol(fit$total_effect1)]
total_effect0 <- fit$total_effect0[, -ncol(fit$total_effect0)]
KO_names <- colnames(lfsr_mat1)
guides <- KO_names[KO_names!="NonTarget"]
lfsr_mat <- lfsr_mat1

if(!all.equal(rownames(lfsr_mat), rownames(log2cpm_exp_mat))){stop("Gene names not match!")}

mean_gene_exp <- rowMeans(log2cpm_exp_mat)
exp_breaks <- quantile(mean_gene_exp, probs = seq(0,1,0.2))
gene_exp_bins <- cut(mean_gene_exp, breaks = exp_breaks, labels = 1:5)
gene_exp_bins[is.na(gene_exp_bins)] <- 1
gene_exp_bins.df <- data.frame(geneID = rownames(log2cpm_exp_mat), mean_exp = mean_gene_exp, exp_bin = gene_exp_bins)
table(gene_exp_bins.df$exp_bin)

lfsr_signif_num_bins <- data.frame()
for(l in 1:5){
  curr_genes <- gene_exp_bins.df[gene_exp_bins.df$exp_bin == l, ]$geneID
  cat(length(curr_genes), "genes in bin", l, "\n")
  curr_lfsr_mat <- lfsr_mat[curr_genes, ]
  curr_lfsr_signif_num <- colSums(curr_lfsr_mat < 0.05)
  lfsr_signif_num_bins <- rbind(lfsr_signif_num_bins, 
                                c(bin = l, curr_lfsr_signif_num))
}
colnames(lfsr_signif_num_bins) <- c("bin", colnames(lfsr_mat))

cat("Total number of DEGs: \n")
colSums(lfsr_signif_num_bins[,guides])
 
lfsr_signif_num_bins.df <- tidyr::gather(lfsr_signif_num_bins[,c("bin", guides)], guide, num_genes, all_of(guides), factor_key=TRUE)
lfsr_signif_num_bins.df$bin <- factor(lfsr_signif_num_bins.df$bin, levels = 1:5, 
                                      labels = c("[0-20%]", "[20-40%]", "[40-60%]", "[60-80%]", "[80-100%]"))

# pdf(file.path(res_dir, "Tcells_stimulated_lfsr_signif_num_by_exp_bins.pdf"), width = 14, height = 3)
ggplot(lfsr_signif_num_bins.df, aes(x=guide, y=num_genes, fill=bin)) + 
  geom_bar(position="stack", stat="identity") +
  scale_fill_brewer(palette = "Blues") + 
  guides(fill=guide_legend(title="Gene expression (log2 CPM) percentile")) +
  labs(x = "Target genes",
       y = "Number of DEGs",
       title = "Number of DEGs detected by gene expression level") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 12),
        legend.position = "right",
        legend.text = element_text(size = 13))

Version Author Date
b60cbfd kevinlkx 2022-09-01
cf9232c kevinlkx 2022-08-31
# dev.off()

   1    2    3    4    5 
1200 1200 1200 1200 1200 
1200 genes in bin 1 
1200 genes in bin 2 
1200 genes in bin 3 
1200 genes in bin 4 
1200 genes in bin 5 
Total number of DEGs: 
  ARID1A     BTLA C10orf54     CBLB     CD3D      CD5   CDKN1B     DGKA 
     393      107       66      631        0      645      468       32 
    DGKZ   HAVCR2     LAG3     LCP2    MEF2D    PDCD1    RASA2    SOCS1 
     113       35        1      589       15        0      277      356 
   STAT6    TCEB2  TMEM222  TNFRSF9 
       1      300        4       14 

Session Information

sessionInfo()
R version 4.0.4 (2021-02-15)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] lattice_0.20-45      GSFA_0.2.8           WebGestaltR_0.4.4   
 [4] kableExtra_1.3.4     ComplexHeatmap_2.6.2 gridExtra_2.3       
 [7] forcats_0.5.1        stringr_1.4.0        dplyr_1.0.8         
[10] purrr_0.3.4          readr_2.1.2          tidyr_1.2.0         
[13] tibble_3.1.6         ggplot2_3.3.5        tidyverse_1.3.1     
[16] Matrix_1.4-1         data.table_1.14.2    SeuratObject_4.0.4  
[19] Seurat_4.1.0         workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] utf8_1.2.2            reticulate_1.25       tidyselect_1.1.2     
  [4] htmlwidgets_1.5.4     Rtsne_0.15            munsell_0.5.0        
  [7] codetools_0.2-18      ica_1.0-2             future_1.24.0        
 [10] miniUI_0.1.1.1        withr_2.5.0           spatstat.random_2.1-0
 [13] colorspace_2.0-3      highr_0.9             knitr_1.38           
 [16] rstudioapi_0.13       stats4_4.0.4          ROCR_1.0-11          
 [19] tensor_1.5            listenv_0.8.0         labeling_0.4.2       
 [22] git2r_0.30.1          polyclip_1.10-0       farver_2.1.1         
 [25] rprojroot_2.0.2       parallelly_1.32.1     vctrs_0.4.1          
 [28] generics_0.1.3        xfun_0.30             R6_2.5.1             
 [31] doParallel_1.0.17     clue_0.3-60           spatstat.utils_2.3-0 
 [34] assertthat_0.2.1      promises_1.2.0.1      scales_1.2.0         
 [37] gtable_0.3.0          Cairo_1.6-0           globals_0.16.0       
 [40] processx_3.5.3        goftest_1.2-3         rlang_1.0.4          
 [43] systemfonts_1.0.4     GlobalOptions_0.1.2   splines_4.0.4        
 [46] lazyeval_0.2.2        spatstat.geom_2.3-2   broom_0.8.0          
 [49] yaml_2.3.5            reshape2_1.4.4        abind_1.4-5          
 [52] modelr_0.1.8          backports_1.4.1       httpuv_1.6.5         
 [55] tools_4.0.4           ellipsis_0.3.2        spatstat.core_2.4-0  
 [58] jquerylib_0.1.4       RColorBrewer_1.1-3    BiocGenerics_0.36.1  
 [61] ggridges_0.5.3        Rcpp_1.0.9            plyr_1.8.6           
 [64] ps_1.7.1              rpart_4.1-15          deldir_1.0-6         
 [67] pbapply_1.5-0         GetoptLong_1.0.5      cowplot_1.1.1        
 [70] S4Vectors_0.28.1      zoo_1.8-9             haven_2.5.0          
 [73] ggrepel_0.9.1         cluster_2.1.3         fs_1.5.2             
 [76] apcluster_1.4.10      magrittr_2.0.3        scattermore_0.7      
 [79] circlize_0.4.15       lmtest_0.9-40         reprex_2.0.1         
 [82] RANN_2.6.1            whisker_0.4           fitdistrplus_1.1-8   
 [85] matrixStats_0.62.0    hms_1.1.1             patchwork_1.1.1      
 [88] mime_0.12             evaluate_0.16         xtable_1.8-4         
 [91] readxl_1.4.0          IRanges_2.24.1        shape_1.4.6          
 [94] compiler_4.0.4        KernSmooth_2.23-20    crayon_1.5.1         
 [97] htmltools_0.5.3       mgcv_1.8-39           later_1.3.0          
[100] tzdb_0.3.0            lubridate_1.8.0       DBI_1.1.3            
[103] dbplyr_2.1.1          MASS_7.3-58.1         cli_3.3.0            
[106] parallel_4.0.4        igraph_1.3.4          pkgconfig_2.0.3      
[109] getPass_0.2-2         plotly_4.10.0         spatstat.sparse_2.1-0
[112] xml2_1.3.3            foreach_1.5.2         svglite_2.0.0        
[115] bslib_0.3.1           rngtools_1.5.2        webshot_0.5.2        
[118] rvest_1.0.2           doRNG_1.8.2           callr_3.7.0          
[121] digest_0.6.29         sctransform_0.3.3     RcppAnnoy_0.0.19     
[124] spatstat.data_2.1-2   rmarkdown_2.13        cellranger_1.1.0     
[127] leiden_0.3.9          uwot_0.1.11           shiny_1.7.1          
[130] rjson_0.2.21          lifecycle_1.0.1       nlme_3.1-159         
[133] jsonlite_1.8.0        viridisLite_0.4.0     fansi_1.0.3          
[136] pillar_1.8.0          fastmap_1.1.0         httr_1.4.2           
[139] survival_3.3-1        glue_1.6.2            png_0.1-7            
[142] iterators_1.0.14      stringi_1.7.6         sass_0.4.1           
[145] irlba_2.3.5           future.apply_1.8.1   

sessionInfo()
R version 4.0.4 (2021-02-15)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] lattice_0.20-45      GSFA_0.2.8           WebGestaltR_0.4.4   
 [4] kableExtra_1.3.4     ComplexHeatmap_2.6.2 gridExtra_2.3       
 [7] forcats_0.5.1        stringr_1.4.0        dplyr_1.0.8         
[10] purrr_0.3.4          readr_2.1.2          tidyr_1.2.0         
[13] tibble_3.1.6         ggplot2_3.3.5        tidyverse_1.3.1     
[16] Matrix_1.4-1         data.table_1.14.2    SeuratObject_4.0.4  
[19] Seurat_4.1.0         workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] utf8_1.2.2            reticulate_1.25       tidyselect_1.1.2     
  [4] htmlwidgets_1.5.4     Rtsne_0.15            munsell_0.5.0        
  [7] codetools_0.2-18      ica_1.0-2             future_1.24.0        
 [10] miniUI_0.1.1.1        withr_2.5.0           spatstat.random_2.1-0
 [13] colorspace_2.0-3      highr_0.9             knitr_1.38           
 [16] rstudioapi_0.13       stats4_4.0.4          ROCR_1.0-11          
 [19] tensor_1.5            listenv_0.8.0         labeling_0.4.2       
 [22] git2r_0.30.1          polyclip_1.10-0       farver_2.1.1         
 [25] rprojroot_2.0.2       parallelly_1.32.1     vctrs_0.4.1          
 [28] generics_0.1.3        xfun_0.30             R6_2.5.1             
 [31] doParallel_1.0.17     clue_0.3-60           spatstat.utils_2.3-0 
 [34] assertthat_0.2.1      promises_1.2.0.1      scales_1.2.0         
 [37] gtable_0.3.0          Cairo_1.6-0           globals_0.16.0       
 [40] processx_3.5.3        goftest_1.2-3         rlang_1.0.4          
 [43] systemfonts_1.0.4     GlobalOptions_0.1.2   splines_4.0.4        
 [46] lazyeval_0.2.2        spatstat.geom_2.3-2   broom_0.8.0          
 [49] yaml_2.3.5            reshape2_1.4.4        abind_1.4-5          
 [52] modelr_0.1.8          backports_1.4.1       httpuv_1.6.5         
 [55] tools_4.0.4           ellipsis_0.3.2        spatstat.core_2.4-0  
 [58] jquerylib_0.1.4       RColorBrewer_1.1-3    BiocGenerics_0.36.1  
 [61] ggridges_0.5.3        Rcpp_1.0.9            plyr_1.8.6           
 [64] ps_1.7.1              rpart_4.1-15          deldir_1.0-6         
 [67] pbapply_1.5-0         GetoptLong_1.0.5      cowplot_1.1.1        
 [70] S4Vectors_0.28.1      zoo_1.8-9             haven_2.5.0          
 [73] ggrepel_0.9.1         cluster_2.1.3         fs_1.5.2             
 [76] apcluster_1.4.10      magrittr_2.0.3        scattermore_0.7      
 [79] circlize_0.4.15       lmtest_0.9-40         reprex_2.0.1         
 [82] RANN_2.6.1            whisker_0.4           fitdistrplus_1.1-8   
 [85] matrixStats_0.62.0    hms_1.1.1             patchwork_1.1.1      
 [88] mime_0.12             evaluate_0.16         xtable_1.8-4         
 [91] readxl_1.4.0          IRanges_2.24.1        shape_1.4.6          
 [94] compiler_4.0.4        KernSmooth_2.23-20    crayon_1.5.1         
 [97] htmltools_0.5.3       mgcv_1.8-39           later_1.3.0          
[100] tzdb_0.3.0            lubridate_1.8.0       DBI_1.1.3            
[103] dbplyr_2.1.1          MASS_7.3-58.1         cli_3.3.0            
[106] parallel_4.0.4        igraph_1.3.4          pkgconfig_2.0.3      
[109] getPass_0.2-2         plotly_4.10.0         spatstat.sparse_2.1-0
[112] xml2_1.3.3            foreach_1.5.2         svglite_2.0.0        
[115] bslib_0.3.1           rngtools_1.5.2        webshot_0.5.2        
[118] rvest_1.0.2           doRNG_1.8.2           callr_3.7.0          
[121] digest_0.6.29         sctransform_0.3.3     RcppAnnoy_0.0.19     
[124] spatstat.data_2.1-2   rmarkdown_2.13        cellranger_1.1.0     
[127] leiden_0.3.9          uwot_0.1.11           shiny_1.7.1          
[130] rjson_0.2.21          lifecycle_1.0.1       nlme_3.1-159         
[133] jsonlite_1.8.0        viridisLite_0.4.0     fansi_1.0.3          
[136] pillar_1.8.0          fastmap_1.1.0         httr_1.4.2           
[139] survival_3.3-1        glue_1.6.2            png_0.1-7            
[142] iterators_1.0.14      stringi_1.7.6         sass_0.4.1           
[145] irlba_2.3.5           future.apply_1.8.1